LArPcaHelper class. More...
#include <LArPcaHelper.h>
Public Types | |
| typedef pandora::CartesianVector | EigenValues |
| typedef std::vector < pandora::CartesianVector > | EigenVectors |
| typedef std::pair< const pandora::CartesianVector, double > | WeightedPoint |
| typedef std::vector < WeightedPoint > | WeightedPointVector |
Public Member Functions | |
| template<typename T > | |
| void | RunPca (const T &t, CartesianVector ¢roid, EigenValues &outputEigenValues, EigenVectors &outputEigenVectors) |
Static Public Member Functions | |
| template<typename T > | |
| static void | RunPca (const T &t, pandora::CartesianVector ¢roid, EigenValues &outputEigenValues, EigenVectors &outputEigenVectors) |
| Run principal component analysis using input calo hits (TPC_VIEW_U,V,W or TPC_3D; all treated as 3D points) More... | |
| static void | RunPca (const WeightedPointVector &pointVector, pandora::CartesianVector ¢roid, EigenValues &outputEigenValues, EigenVectors &outputEigenVectors) |
| Run principal component analysis using weighted input Cartesian vectors (TPC_VIEW_U,V,W or TPC_3D; all treated as 3D points) More... | |
LArPcaHelper class.
Definition at line 21 of file LArPcaHelper.h.
| typedef pandora::CartesianVector lar_content::LArPcaHelper::EigenValues |
Definition at line 24 of file LArPcaHelper.h.
| typedef std::vector<pandora::CartesianVector> lar_content::LArPcaHelper::EigenVectors |
Definition at line 25 of file LArPcaHelper.h.
| typedef std::pair<const pandora::CartesianVector, double> lar_content::LArPcaHelper::WeightedPoint |
Definition at line 26 of file LArPcaHelper.h.
| typedef std::vector<WeightedPoint> lar_content::LArPcaHelper::WeightedPointVector |
Definition at line 27 of file LArPcaHelper.h.
| void lar_content::LArPcaHelper::RunPca | ( | const T & | t, |
| CartesianVector & | centroid, | ||
| EigenValues & | outputEigenValues, | ||
| EigenVectors & | outputEigenVectors | ||
| ) |
Definition at line 21 of file LArPcaHelper.cc.
|
static |
Run principal component analysis using input calo hits (TPC_VIEW_U,V,W or TPC_3D; all treated as 3D points)
| t | the input information |
| centroid | to receive the centroid position |
| outputEigenValues | to receive the eigen values |
| outputEigenVectors | to receive the eigen vectors |
|
static |
Run principal component analysis using weighted input Cartesian vectors (TPC_VIEW_U,V,W or TPC_3D; all treated as 3D points)
| pointVector | a vector of pairs of positions and weights |
| centroid | to receive the centroid position |
| outputEigenValues | to receive the eigen values |
| outputEigenVectors | to receive the eigen vectors |
1.8.5