All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Public Member Functions | Static Public Member Functions | Static Private Member Functions | List of all members
lar_content::LArDiscreteProbabilityHelper Class Reference

LArDiscreteProbabilityHelper class. More...

#include <LArDiscreteProbabilityHelper.h>

Public Member Functions

template<>
DiscreteProbabilityVector MakeRandomisedSample (const DiscreteProbabilityVector &t, std::mt19937 &randomNumberGenerator)
 
template<>
unsigned int GetSize (const DiscreteProbabilityVector &t)
 
template<>
float GetElement (const DiscreteProbabilityVector &t, const unsigned int index)
 

Static Public Member Functions

template<typename T >
static float CalculateCorrelationCoefficientPValueFromPermutationTest (const T &t1, const T &t2, std::mt19937 &randomNumberGenerator, const unsigned int nPermutations)
 Calculate P value for measured correlation coefficient between two datasets via a permutation test. More...
 
template<typename T >
static float CalculateCorrelationCoefficientPValueFromStudentTDistribution (const T &t1, const T &t2, const unsigned int nIntegrationSteps, const float upperLimit)
 Calculate P value for measured correlation coefficient between two datasets via a integrating the student T dist. More...
 
template<typename T >
static float CalculateCorrelationCoefficient (const T &t1, const T &t2)
 Calculate the correlation coefficient between two datasets. More...
 
template<typename T >
static float CalculateMean (const T &t)
 Calculate the mean of a dataset. More...
 

Static Private Member Functions

template<typename T >
static T MakeRandomisedSample (const T &t, std::mt19937 &randomNumberGenerator)
 Make a randomised copy of a dataset. More...
 
template<typename T >
static std::vector< T > MakeRandomisedSample (const std::vector< T > &t, std::mt19937 &randomNumberGenerator)
 Make a randomised copy of dataset (dataset is an std::vector) More...
 
template<typename T >
static unsigned int GetSize (const T &t)
 Get the size the size of a dataset. More...
 
template<typename T >
static unsigned int GetSize (const std::vector< T > &t)
 Get the size of a dataset (dataset is an std::vector) More...
 
template<typename T >
static float GetElement (const T &t, const unsigned int index)
 Get an element in a dataset. More...
 
template<typename T >
static float GetElement (const std::vector< T > &t, const unsigned int index)
 Get an element in a dataset (dataset is an std::vector) More...
 

Detailed Description

LArDiscreteProbabilityHelper class.

Definition at line 22 of file LArDiscreteProbabilityHelper.h.

Member Function Documentation

template<typename T >
template float lar_content::LArDiscreteProbabilityHelper::CalculateCorrelationCoefficient ( const T &  t1,
const T &  t2 
)
static

Calculate the correlation coefficient between two datasets.

Parameters
t1the first input dataset
t2the second input dataset
Returns
the correlation coefficient

Definition at line 74 of file LArDiscreteProbabilityHelper.cc.

75 {
76  const unsigned int size1(LArDiscreteProbabilityHelper::GetSize(t1));
77  const unsigned int size2(LArDiscreteProbabilityHelper::GetSize(t2));
78  if (size1 != size2)
79  throw pandora::StatusCodeException(pandora::STATUS_CODE_INVALID_PARAMETER);
80 
81  if (2 > size1)
82  throw pandora::StatusCodeException(pandora::STATUS_CODE_INVALID_PARAMETER);
83 
84  const float mean1(LArDiscreteProbabilityHelper::CalculateMean(t1));
85  const float mean2(LArDiscreteProbabilityHelper::CalculateMean(t2));
86 
87  float variance1(0.f), variance2(0.f), covariance(0.f);
88 
89  for (unsigned int iElement = 0; iElement < size1; ++iElement)
90  {
91  const float diff1(LArDiscreteProbabilityHelper::GetElement(t1, iElement) - mean1);
92  const float diff2(LArDiscreteProbabilityHelper::GetElement(t2, iElement) - mean2);
93 
94  variance1 += diff1 * diff1;
95  variance2 += diff2 * diff2;
96  covariance += diff1 * diff2;
97  }
98 
99  if (variance1 < std::numeric_limits<float>::epsilon() || variance2 < std::numeric_limits<float>::epsilon())
100  throw pandora::StatusCodeException(pandora::STATUS_CODE_FAILURE);
101 
102  const float sqrtVars(std::sqrt(variance1 * variance2));
103  if (sqrtVars < std::numeric_limits<float>::epsilon())
104  throw pandora::StatusCodeException(pandora::STATUS_CODE_FAILURE);
105 
106  return covariance / sqrtVars;
107 }
static unsigned int GetSize(const T &t)
Get the size the size of a dataset.
static float CalculateMean(const T &t)
Calculate the mean of a dataset.
static float GetElement(const T &t, const unsigned int index)
Get an element in a dataset.
template<typename T >
template float lar_content::LArDiscreteProbabilityHelper::CalculateCorrelationCoefficientPValueFromPermutationTest ( const T &  t1,
const T &  t2,
std::mt19937 &  randomNumberGenerator,
const unsigned int  nPermutations 
)
static

Calculate P value for measured correlation coefficient between two datasets via a permutation test.

Parameters
t1the first input dataset
t2the second input dataset
randomNumberGeneratorthe random number generator to shuffle the datasets
nPermutationsthe number of permutations to run
Returns
the p-value

Definition at line 16 of file LArDiscreteProbabilityHelper.cc.

18 {
19  if (1 > nPermutations)
20  throw pandora::StatusCodeException(pandora::STATUS_CODE_INVALID_PARAMETER);
21 
23 
24  unsigned int nExtreme(0);
25  for (unsigned int iPermutation = 0; iPermutation < nPermutations; ++iPermutation)
26  {
28  LArDiscreteProbabilityHelper::MakeRandomisedSample(t1, randomNumberGenerator),
29  LArDiscreteProbabilityHelper::MakeRandomisedSample(t2, randomNumberGenerator)));
30 
31  if ((rRandomised - rNominal) > std::numeric_limits<float>::epsilon())
32  nExtreme++;
33  }
34 
35  return static_cast<float>(nExtreme) / static_cast<float>(nPermutations);
36 }
static float CalculateCorrelationCoefficient(const T &t1, const T &t2)
Calculate the correlation coefficient between two datasets.
static T MakeRandomisedSample(const T &t, std::mt19937 &randomNumberGenerator)
Make a randomised copy of a dataset.
template<typename T >
template float lar_content::LArDiscreteProbabilityHelper::CalculateCorrelationCoefficientPValueFromStudentTDistribution ( const T &  t1,
const T &  t2,
const unsigned int  nIntegrationSteps,
const float  upperLimit 
)
static

Calculate P value for measured correlation coefficient between two datasets via a integrating the student T dist.

Parameters
t1the first input dataset
t2the second input dataset
nIntegrationStepshow many steps to use in the trapezium integration
upperLimitthe upper limit of the integration
Returns
the p-value

Definition at line 41 of file LArDiscreteProbabilityHelper.cc.

43 {
45  const float dof(static_cast<float>(LArDiscreteProbabilityHelper::GetSize(t1)) - 2.f);
46 
47  if (0 > dof)
48  throw pandora::StatusCodeException(pandora::STATUS_CODE_INVALID_PARAMETER);
49 
50  const float tTestStatisticDenominator(1.f - correlation - correlation);
51 
52  if (tTestStatisticDenominator < std::numeric_limits<float>::epsilon())
53  throw pandora::StatusCodeException(pandora::STATUS_CODE_FAILURE);
54 
55  const float tTestStatistic(correlation * std::sqrt(dof) / (std::sqrt(tTestStatisticDenominator)));
56  const float tDistCoeff(std::tgamma(0.5f * (dof + 1.f)) / std::tgamma(0.5f * dof) / (std::sqrt(dof * M_PI)));
57 
58  const float dx((upperLimit - tTestStatistic) / static_cast<float>(nIntegrationSteps));
59  float integral(tDistCoeff * std::pow(1.f + tTestStatistic * tTestStatistic / dof, -0.5f * (dof + 1.f)) +
60  tDistCoeff * std::pow(1.f + upperLimit * upperLimit / dof, -0.5f * (dof + 1.f)));
61  for (unsigned int iStep = 1; iStep < nIntegrationSteps; ++iStep)
62  {
63  integral += 2.f * tDistCoeff *
64  std::pow(1.f + (tTestStatistic + static_cast<float>(iStep) * dx) * (tTestStatistic + static_cast<float>(iStep) * dx) / dof,
65  -0.5f * (dof + 1.f));
66  }
67 
68  return integral * dx / 2.f;
69 }
static float CalculateCorrelationCoefficient(const T &t1, const T &t2)
Calculate the correlation coefficient between two datasets.
static unsigned int GetSize(const T &t)
Get the size the size of a dataset.
template<typename T >
template float lar_content::LArDiscreteProbabilityHelper::CalculateMean ( const T &  t)
static

Calculate the mean of a dataset.

Parameters
tthe dataset
Returns
the mean

Definition at line 112 of file LArDiscreteProbabilityHelper.cc.

113 {
114  const unsigned int size(LArDiscreteProbabilityHelper::GetSize(t));
115  if (1 > size)
116  throw pandora::StatusCodeException(pandora::STATUS_CODE_NOT_INITIALIZED);
117 
118  float mean(0.f);
119  for (unsigned int iElement = 0; iElement < size; ++iElement)
121 
122  return mean / static_cast<float>(size);
123 }
std::size_t size(FixedBins< T, C > const &) noexcept
Definition: FixedBins.h:561
static unsigned int GetSize(const T &t)
Get the size the size of a dataset.
double mean(const std::vector< short > &wf, size_t start, size_t nsample)
Definition: UtilFunc.cxx:13
static float GetElement(const T &t, const unsigned int index)
Get an element in a dataset.
template<typename T >
static float lar_content::LArDiscreteProbabilityHelper::GetElement ( const T &  t,
const unsigned int  index 
)
staticprivate

Get an element in a dataset.

Parameters
tthe dataset
indexthe index of the element
Returns
the dataset element
template<typename T >
float lar_content::LArDiscreteProbabilityHelper::GetElement ( const std::vector< T > &  t,
const unsigned int  index 
)
inlinestaticprivate

Get an element in a dataset (dataset is an std::vector)

Parameters
tthe std::vector dataset
indexthe index of the element
Returns
the std::vector-based dataset element

Definition at line 174 of file LArDiscreteProbabilityHelper.h.

175 {
176  return static_cast<float>(t.at(index));
177 }
template<>
float lar_content::LArDiscreteProbabilityHelper::GetElement ( const DiscreteProbabilityVector t,
const unsigned int  index 
)
inline

Definition at line 180 of file LArDiscreteProbabilityHelper.h.

181 {
182  return static_cast<float>(t.GetProbability(index));
183 }
template<typename T >
static unsigned int lar_content::LArDiscreteProbabilityHelper::GetSize ( const T &  t)
staticprivate

Get the size the size of a dataset.

Parameters
tthe dataset
Returns
the dataset size
template<typename T >
unsigned int lar_content::LArDiscreteProbabilityHelper::GetSize ( const std::vector< T > &  t)
inlinestaticprivate

Get the size of a dataset (dataset is an std::vector)

Parameters
tthe std::vector dataset
Returns
the std::vector-based dataset size

Definition at line 160 of file LArDiscreteProbabilityHelper.h.

161 {
162  return t.size();
163 }
template<>
unsigned int lar_content::LArDiscreteProbabilityHelper::GetSize ( const DiscreteProbabilityVector t)
inline

Definition at line 166 of file LArDiscreteProbabilityHelper.h.

167 {
168  return t.GetSize();
169 }
template<typename T >
static T lar_content::LArDiscreteProbabilityHelper::MakeRandomisedSample ( const T &  t,
std::mt19937 &  randomNumberGenerator 
)
staticprivate

Make a randomised copy of a dataset.

Parameters
tthe dataset to be shuffled
randomNumberGeneratorthe random number generator
Returns
the reshuffled dataset
template<typename T >
std::vector< T > lar_content::LArDiscreteProbabilityHelper::MakeRandomisedSample ( const std::vector< T > &  t,
std::mt19937 &  randomNumberGenerator 
)
inlinestaticprivate

Make a randomised copy of dataset (dataset is an std::vector)

Parameters
tthe std::vector-based dataset to be shuffled
randomNumberGeneratorthe random number generator
Returns
the reshuffled std::vector

Definition at line 143 of file LArDiscreteProbabilityHelper.h.

144 {
145  std::vector<T> randomisedVector(t);
146  std::shuffle(randomisedVector.begin(), randomisedVector.end(), randomNumberGenerator);
147 
148  return randomisedVector;
149 }
template<>
DiscreteProbabilityVector lar_content::LArDiscreteProbabilityHelper::MakeRandomisedSample ( const DiscreteProbabilityVector t,
std::mt19937 &  randomNumberGenerator 
)
inline

Definition at line 152 of file LArDiscreteProbabilityHelper.h.

153 {
154  return DiscreteProbabilityVector(t, randomNumberGenerator);
155 }

The documentation for this class was generated from the following files: