All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
json.hpp
Go to the documentation of this file.
1 /*
2  __ _____ _____ _____
3  __| | __| | | | JSON for Modern C++
4 | | |__ | | | | | | version 3.7.3
5 |_____|_____|_____|_|___| https://github.com/nlohmann/json
6 
7 Licensed under the MIT License <http://opensource.org/licenses/MIT>.
8 SPDX-License-Identifier: MIT
9 Copyright (c) 2013-2019 Niels Lohmann <http://nlohmann.me>.
10 
11 Permission is hereby granted, free of charge, to any person obtaining a copy
12 of this software and associated documentation files (the "Software"), to deal
13 in the Software without restriction, including without limitation the rights
14 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
15 copies of the Software, and to permit persons to whom the Software is
16 furnished to do so, subject to the following conditions:
17 
18 The above copyright notice and this permission notice shall be included in all
19 copies or substantial portions of the Software.
20 
21 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
22 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
24 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
25 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
26 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
27 SOFTWARE.
28 */
29 
30 #ifndef INCLUDE_NLOHMANN_JSON_HPP_
31 #define INCLUDE_NLOHMANN_JSON_HPP_
32 
33 #define NLOHMANN_JSON_VERSION_MAJOR 3
34 #define NLOHMANN_JSON_VERSION_MINOR 7
35 #define NLOHMANN_JSON_VERSION_PATCH 3
36 
37 #include <algorithm> // all_of, find, for_each
38 #include <cassert> // assert
39 #include <ciso646> // and, not, or
40 #include <cstddef> // nullptr_t, ptrdiff_t, size_t
41 #include <functional> // hash, less
42 #include <initializer_list> // initializer_list
43 #include <iosfwd> // istream, ostream
44 #include <iterator> // random_access_iterator_tag
45 #include <memory> // unique_ptr
46 #include <numeric> // accumulate
47 #include <string> // string, stoi, to_string
48 #include <utility> // declval, forward, move, pair, swap
49 #include <vector> // vector
50 
51 // #include <nlohmann/adl_serializer.hpp>
52 
53 
54 #include <utility>
55 
56 // #include <nlohmann/detail/conversions/from_json.hpp>
57 
58 
59 #include <algorithm> // transform
60 #include <array> // array
61 #include <ciso646> // and, not
62 #include <forward_list> // forward_list
63 #include <iterator> // inserter, front_inserter, end
64 #include <map> // map
65 #include <string> // string
66 #include <tuple> // tuple, make_tuple
67 #include <type_traits> // is_arithmetic, is_same, is_enum, underlying_type, is_convertible
68 #include <unordered_map> // unordered_map
69 #include <utility> // pair, declval
70 #include <valarray> // valarray
71 
72 // #include <nlohmann/detail/exceptions.hpp>
73 
74 
75 #include <exception> // exception
76 #include <stdexcept> // runtime_error
77 #include <string> // to_string
78 
79 // #include <nlohmann/detail/input/position_t.hpp>
80 
81 
82 #include <cstddef> // size_t
83 
84 namespace nlohmann
85 {
86 namespace detail
87 {
88 /// struct to capture the start position of the current token
89 struct position_t
90 {
91  /// the total number of characters read
92  std::size_t chars_read_total = 0;
93  /// the number of characters read in the current line
94  std::size_t chars_read_current_line = 0;
95  /// the number of lines read
96  std::size_t lines_read = 0;
97 
98  /// conversion to size_t to preserve SAX interface
99  constexpr operator size_t() const
100  {
101  return chars_read_total;
102  }
103 };
104 
105 } // namespace detail
106 } // namespace nlohmann
107 
108 // #include <nlohmann/detail/macro_scope.hpp>
109 
110 
111 #include <utility> // pair
112 // #include <nlohmann/thirdparty/hedley/hedley.hpp>
113 /* Hedley - https://nemequ.github.io/hedley
114  * Created by Evan Nemerson <evan@nemerson.com>
115  *
116  * To the extent possible under law, the author(s) have dedicated all
117  * copyright and related and neighboring rights to this software to
118  * the public domain worldwide. This software is distributed without
119  * any warranty.
120  *
121  * For details, see <http://creativecommons.org/publicdomain/zero/1.0/>.
122  * SPDX-License-Identifier: CC0-1.0
123  */
124 
125 #if !defined(JSON_HEDLEY_VERSION) || (JSON_HEDLEY_VERSION < 11)
126 #if defined(JSON_HEDLEY_VERSION)
127  #undef JSON_HEDLEY_VERSION
128 #endif
129 #define JSON_HEDLEY_VERSION 11
130 
131 #if defined(JSON_HEDLEY_STRINGIFY_EX)
132  #undef JSON_HEDLEY_STRINGIFY_EX
133 #endif
134 #define JSON_HEDLEY_STRINGIFY_EX(x) #x
135 
136 #if defined(JSON_HEDLEY_STRINGIFY)
137  #undef JSON_HEDLEY_STRINGIFY
138 #endif
139 #define JSON_HEDLEY_STRINGIFY(x) JSON_HEDLEY_STRINGIFY_EX(x)
140 
141 #if defined(JSON_HEDLEY_CONCAT_EX)
142  #undef JSON_HEDLEY_CONCAT_EX
143 #endif
144 #define JSON_HEDLEY_CONCAT_EX(a,b) a##b
145 
146 #if defined(JSON_HEDLEY_CONCAT)
147  #undef JSON_HEDLEY_CONCAT
148 #endif
149 #define JSON_HEDLEY_CONCAT(a,b) JSON_HEDLEY_CONCAT_EX(a,b)
150 
151 #if defined(JSON_HEDLEY_VERSION_ENCODE)
152  #undef JSON_HEDLEY_VERSION_ENCODE
153 #endif
154 #define JSON_HEDLEY_VERSION_ENCODE(major,minor,revision) (((major) * 1000000) + ((minor) * 1000) + (revision))
155 
156 #if defined(JSON_HEDLEY_VERSION_DECODE_MAJOR)
157  #undef JSON_HEDLEY_VERSION_DECODE_MAJOR
158 #endif
159 #define JSON_HEDLEY_VERSION_DECODE_MAJOR(version) ((version) / 1000000)
160 
161 #if defined(JSON_HEDLEY_VERSION_DECODE_MINOR)
162  #undef JSON_HEDLEY_VERSION_DECODE_MINOR
163 #endif
164 #define JSON_HEDLEY_VERSION_DECODE_MINOR(version) (((version) % 1000000) / 1000)
165 
166 #if defined(JSON_HEDLEY_VERSION_DECODE_REVISION)
167  #undef JSON_HEDLEY_VERSION_DECODE_REVISION
168 #endif
169 #define JSON_HEDLEY_VERSION_DECODE_REVISION(version) ((version) % 1000)
170 
171 #if defined(JSON_HEDLEY_GNUC_VERSION)
172  #undef JSON_HEDLEY_GNUC_VERSION
173 #endif
174 #if defined(__GNUC__) && defined(__GNUC_PATCHLEVEL__)
175  #define JSON_HEDLEY_GNUC_VERSION JSON_HEDLEY_VERSION_ENCODE(__GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__)
176 #elif defined(__GNUC__)
177  #define JSON_HEDLEY_GNUC_VERSION JSON_HEDLEY_VERSION_ENCODE(__GNUC__, __GNUC_MINOR__, 0)
178 #endif
179 
180 #if defined(JSON_HEDLEY_GNUC_VERSION_CHECK)
181  #undef JSON_HEDLEY_GNUC_VERSION_CHECK
182 #endif
183 #if defined(JSON_HEDLEY_GNUC_VERSION)
184  #define JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_GNUC_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
185 #else
186  #define JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch) (0)
187 #endif
188 
189 #if defined(JSON_HEDLEY_MSVC_VERSION)
190  #undef JSON_HEDLEY_MSVC_VERSION
191 #endif
192 #if defined(_MSC_FULL_VER) && (_MSC_FULL_VER >= 140000000)
193  #define JSON_HEDLEY_MSVC_VERSION JSON_HEDLEY_VERSION_ENCODE(_MSC_FULL_VER / 10000000, (_MSC_FULL_VER % 10000000) / 100000, (_MSC_FULL_VER % 100000) / 100)
194 #elif defined(_MSC_FULL_VER)
195  #define JSON_HEDLEY_MSVC_VERSION JSON_HEDLEY_VERSION_ENCODE(_MSC_FULL_VER / 1000000, (_MSC_FULL_VER % 1000000) / 10000, (_MSC_FULL_VER % 10000) / 10)
196 #elif defined(_MSC_VER)
197  #define JSON_HEDLEY_MSVC_VERSION JSON_HEDLEY_VERSION_ENCODE(_MSC_VER / 100, _MSC_VER % 100, 0)
198 #endif
199 
200 #if defined(JSON_HEDLEY_MSVC_VERSION_CHECK)
201  #undef JSON_HEDLEY_MSVC_VERSION_CHECK
202 #endif
203 #if !defined(_MSC_VER)
204  #define JSON_HEDLEY_MSVC_VERSION_CHECK(major,minor,patch) (0)
205 #elif defined(_MSC_VER) && (_MSC_VER >= 1400)
206  #define JSON_HEDLEY_MSVC_VERSION_CHECK(major,minor,patch) (_MSC_FULL_VER >= ((major * 10000000) + (minor * 100000) + (patch)))
207 #elif defined(_MSC_VER) && (_MSC_VER >= 1200)
208  #define JSON_HEDLEY_MSVC_VERSION_CHECK(major,minor,patch) (_MSC_FULL_VER >= ((major * 1000000) + (minor * 10000) + (patch)))
209 #else
210  #define JSON_HEDLEY_MSVC_VERSION_CHECK(major,minor,patch) (_MSC_VER >= ((major * 100) + (minor)))
211 #endif
212 
213 #if defined(JSON_HEDLEY_INTEL_VERSION)
214  #undef JSON_HEDLEY_INTEL_VERSION
215 #endif
216 #if defined(__INTEL_COMPILER) && defined(__INTEL_COMPILER_UPDATE)
217  #define JSON_HEDLEY_INTEL_VERSION JSON_HEDLEY_VERSION_ENCODE(__INTEL_COMPILER / 100, __INTEL_COMPILER % 100, __INTEL_COMPILER_UPDATE)
218 #elif defined(__INTEL_COMPILER)
219  #define JSON_HEDLEY_INTEL_VERSION JSON_HEDLEY_VERSION_ENCODE(__INTEL_COMPILER / 100, __INTEL_COMPILER % 100, 0)
220 #endif
221 
222 #if defined(JSON_HEDLEY_INTEL_VERSION_CHECK)
223  #undef JSON_HEDLEY_INTEL_VERSION_CHECK
224 #endif
225 #if defined(JSON_HEDLEY_INTEL_VERSION)
226  #define JSON_HEDLEY_INTEL_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_INTEL_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
227 #else
228  #define JSON_HEDLEY_INTEL_VERSION_CHECK(major,minor,patch) (0)
229 #endif
230 
231 #if defined(JSON_HEDLEY_PGI_VERSION)
232  #undef JSON_HEDLEY_PGI_VERSION
233 #endif
234 #if defined(__PGI) && defined(__PGIC__) && defined(__PGIC_MINOR__) && defined(__PGIC_PATCHLEVEL__)
235  #define JSON_HEDLEY_PGI_VERSION JSON_HEDLEY_VERSION_ENCODE(__PGIC__, __PGIC_MINOR__, __PGIC_PATCHLEVEL__)
236 #endif
237 
238 #if defined(JSON_HEDLEY_PGI_VERSION_CHECK)
239  #undef JSON_HEDLEY_PGI_VERSION_CHECK
240 #endif
241 #if defined(JSON_HEDLEY_PGI_VERSION)
242  #define JSON_HEDLEY_PGI_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_PGI_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
243 #else
244  #define JSON_HEDLEY_PGI_VERSION_CHECK(major,minor,patch) (0)
245 #endif
246 
247 #if defined(JSON_HEDLEY_SUNPRO_VERSION)
248  #undef JSON_HEDLEY_SUNPRO_VERSION
249 #endif
250 #if defined(__SUNPRO_C) && (__SUNPRO_C > 0x1000)
251  #define JSON_HEDLEY_SUNPRO_VERSION JSON_HEDLEY_VERSION_ENCODE((((__SUNPRO_C >> 16) & 0xf) * 10) + ((__SUNPRO_C >> 12) & 0xf), (((__SUNPRO_C >> 8) & 0xf) * 10) + ((__SUNPRO_C >> 4) & 0xf), (__SUNPRO_C & 0xf) * 10)
252 #elif defined(__SUNPRO_C)
253  #define JSON_HEDLEY_SUNPRO_VERSION JSON_HEDLEY_VERSION_ENCODE((__SUNPRO_C >> 8) & 0xf, (__SUNPRO_C >> 4) & 0xf, (__SUNPRO_C) & 0xf)
254 #elif defined(__SUNPRO_CC) && (__SUNPRO_CC > 0x1000)
255  #define JSON_HEDLEY_SUNPRO_VERSION JSON_HEDLEY_VERSION_ENCODE((((__SUNPRO_CC >> 16) & 0xf) * 10) + ((__SUNPRO_CC >> 12) & 0xf), (((__SUNPRO_CC >> 8) & 0xf) * 10) + ((__SUNPRO_CC >> 4) & 0xf), (__SUNPRO_CC & 0xf) * 10)
256 #elif defined(__SUNPRO_CC)
257  #define JSON_HEDLEY_SUNPRO_VERSION JSON_HEDLEY_VERSION_ENCODE((__SUNPRO_CC >> 8) & 0xf, (__SUNPRO_CC >> 4) & 0xf, (__SUNPRO_CC) & 0xf)
258 #endif
259 
260 #if defined(JSON_HEDLEY_SUNPRO_VERSION_CHECK)
261  #undef JSON_HEDLEY_SUNPRO_VERSION_CHECK
262 #endif
263 #if defined(JSON_HEDLEY_SUNPRO_VERSION)
264  #define JSON_HEDLEY_SUNPRO_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_SUNPRO_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
265 #else
266  #define JSON_HEDLEY_SUNPRO_VERSION_CHECK(major,minor,patch) (0)
267 #endif
268 
269 #if defined(JSON_HEDLEY_EMSCRIPTEN_VERSION)
270  #undef JSON_HEDLEY_EMSCRIPTEN_VERSION
271 #endif
272 #if defined(__EMSCRIPTEN__)
273  #define JSON_HEDLEY_EMSCRIPTEN_VERSION JSON_HEDLEY_VERSION_ENCODE(__EMSCRIPTEN_major__, __EMSCRIPTEN_minor__, __EMSCRIPTEN_tiny__)
274 #endif
275 
276 #if defined(JSON_HEDLEY_EMSCRIPTEN_VERSION_CHECK)
277  #undef JSON_HEDLEY_EMSCRIPTEN_VERSION_CHECK
278 #endif
279 #if defined(JSON_HEDLEY_EMSCRIPTEN_VERSION)
280  #define JSON_HEDLEY_EMSCRIPTEN_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_EMSCRIPTEN_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
281 #else
282  #define JSON_HEDLEY_EMSCRIPTEN_VERSION_CHECK(major,minor,patch) (0)
283 #endif
284 
285 #if defined(JSON_HEDLEY_ARM_VERSION)
286  #undef JSON_HEDLEY_ARM_VERSION
287 #endif
288 #if defined(__CC_ARM) && defined(__ARMCOMPILER_VERSION)
289  #define JSON_HEDLEY_ARM_VERSION JSON_HEDLEY_VERSION_ENCODE(__ARMCOMPILER_VERSION / 1000000, (__ARMCOMPILER_VERSION % 1000000) / 10000, (__ARMCOMPILER_VERSION % 10000) / 100)
290 #elif defined(__CC_ARM) && defined(__ARMCC_VERSION)
291  #define JSON_HEDLEY_ARM_VERSION JSON_HEDLEY_VERSION_ENCODE(__ARMCC_VERSION / 1000000, (__ARMCC_VERSION % 1000000) / 10000, (__ARMCC_VERSION % 10000) / 100)
292 #endif
293 
294 #if defined(JSON_HEDLEY_ARM_VERSION_CHECK)
295  #undef JSON_HEDLEY_ARM_VERSION_CHECK
296 #endif
297 #if defined(JSON_HEDLEY_ARM_VERSION)
298  #define JSON_HEDLEY_ARM_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_ARM_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
299 #else
300  #define JSON_HEDLEY_ARM_VERSION_CHECK(major,minor,patch) (0)
301 #endif
302 
303 #if defined(JSON_HEDLEY_IBM_VERSION)
304  #undef JSON_HEDLEY_IBM_VERSION
305 #endif
306 #if defined(__ibmxl__)
307  #define JSON_HEDLEY_IBM_VERSION JSON_HEDLEY_VERSION_ENCODE(__ibmxl_version__, __ibmxl_release__, __ibmxl_modification__)
308 #elif defined(__xlC__) && defined(__xlC_ver__)
309  #define JSON_HEDLEY_IBM_VERSION JSON_HEDLEY_VERSION_ENCODE(__xlC__ >> 8, __xlC__ & 0xff, (__xlC_ver__ >> 8) & 0xff)
310 #elif defined(__xlC__)
311  #define JSON_HEDLEY_IBM_VERSION JSON_HEDLEY_VERSION_ENCODE(__xlC__ >> 8, __xlC__ & 0xff, 0)
312 #endif
313 
314 #if defined(JSON_HEDLEY_IBM_VERSION_CHECK)
315  #undef JSON_HEDLEY_IBM_VERSION_CHECK
316 #endif
317 #if defined(JSON_HEDLEY_IBM_VERSION)
318  #define JSON_HEDLEY_IBM_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_IBM_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
319 #else
320  #define JSON_HEDLEY_IBM_VERSION_CHECK(major,minor,patch) (0)
321 #endif
322 
323 #if defined(JSON_HEDLEY_TI_VERSION)
324  #undef JSON_HEDLEY_TI_VERSION
325 #endif
326 #if defined(__TI_COMPILER_VERSION__)
327  #define JSON_HEDLEY_TI_VERSION JSON_HEDLEY_VERSION_ENCODE(__TI_COMPILER_VERSION__ / 1000000, (__TI_COMPILER_VERSION__ % 1000000) / 1000, (__TI_COMPILER_VERSION__ % 1000))
328 #endif
329 
330 #if defined(JSON_HEDLEY_TI_VERSION_CHECK)
331  #undef JSON_HEDLEY_TI_VERSION_CHECK
332 #endif
333 #if defined(JSON_HEDLEY_TI_VERSION)
334  #define JSON_HEDLEY_TI_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_TI_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
335 #else
336  #define JSON_HEDLEY_TI_VERSION_CHECK(major,minor,patch) (0)
337 #endif
338 
339 #if defined(JSON_HEDLEY_CRAY_VERSION)
340  #undef JSON_HEDLEY_CRAY_VERSION
341 #endif
342 #if defined(_CRAYC)
343  #if defined(_RELEASE_PATCHLEVEL)
344  #define JSON_HEDLEY_CRAY_VERSION JSON_HEDLEY_VERSION_ENCODE(_RELEASE_MAJOR, _RELEASE_MINOR, _RELEASE_PATCHLEVEL)
345  #else
346  #define JSON_HEDLEY_CRAY_VERSION JSON_HEDLEY_VERSION_ENCODE(_RELEASE_MAJOR, _RELEASE_MINOR, 0)
347  #endif
348 #endif
349 
350 #if defined(JSON_HEDLEY_CRAY_VERSION_CHECK)
351  #undef JSON_HEDLEY_CRAY_VERSION_CHECK
352 #endif
353 #if defined(JSON_HEDLEY_CRAY_VERSION)
354  #define JSON_HEDLEY_CRAY_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_CRAY_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
355 #else
356  #define JSON_HEDLEY_CRAY_VERSION_CHECK(major,minor,patch) (0)
357 #endif
358 
359 #if defined(JSON_HEDLEY_IAR_VERSION)
360  #undef JSON_HEDLEY_IAR_VERSION
361 #endif
362 #if defined(__IAR_SYSTEMS_ICC__)
363  #if __VER__ > 1000
364  #define JSON_HEDLEY_IAR_VERSION JSON_HEDLEY_VERSION_ENCODE((__VER__ / 1000000), ((__VER__ / 1000) % 1000), (__VER__ % 1000))
365  #else
366  #define JSON_HEDLEY_IAR_VERSION JSON_HEDLEY_VERSION_ENCODE(VER / 100, __VER__ % 100, 0)
367  #endif
368 #endif
369 
370 #if defined(JSON_HEDLEY_IAR_VERSION_CHECK)
371  #undef JSON_HEDLEY_IAR_VERSION_CHECK
372 #endif
373 #if defined(JSON_HEDLEY_IAR_VERSION)
374  #define JSON_HEDLEY_IAR_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_IAR_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
375 #else
376  #define JSON_HEDLEY_IAR_VERSION_CHECK(major,minor,patch) (0)
377 #endif
378 
379 #if defined(JSON_HEDLEY_TINYC_VERSION)
380  #undef JSON_HEDLEY_TINYC_VERSION
381 #endif
382 #if defined(__TINYC__)
383  #define JSON_HEDLEY_TINYC_VERSION JSON_HEDLEY_VERSION_ENCODE(__TINYC__ / 1000, (__TINYC__ / 100) % 10, __TINYC__ % 100)
384 #endif
385 
386 #if defined(JSON_HEDLEY_TINYC_VERSION_CHECK)
387  #undef JSON_HEDLEY_TINYC_VERSION_CHECK
388 #endif
389 #if defined(JSON_HEDLEY_TINYC_VERSION)
390  #define JSON_HEDLEY_TINYC_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_TINYC_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
391 #else
392  #define JSON_HEDLEY_TINYC_VERSION_CHECK(major,minor,patch) (0)
393 #endif
394 
395 #if defined(JSON_HEDLEY_DMC_VERSION)
396  #undef JSON_HEDLEY_DMC_VERSION
397 #endif
398 #if defined(__DMC__)
399  #define JSON_HEDLEY_DMC_VERSION JSON_HEDLEY_VERSION_ENCODE(__DMC__ >> 8, (__DMC__ >> 4) & 0xf, __DMC__ & 0xf)
400 #endif
401 
402 #if defined(JSON_HEDLEY_DMC_VERSION_CHECK)
403  #undef JSON_HEDLEY_DMC_VERSION_CHECK
404 #endif
405 #if defined(JSON_HEDLEY_DMC_VERSION)
406  #define JSON_HEDLEY_DMC_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_DMC_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
407 #else
408  #define JSON_HEDLEY_DMC_VERSION_CHECK(major,minor,patch) (0)
409 #endif
410 
411 #if defined(JSON_HEDLEY_COMPCERT_VERSION)
412  #undef JSON_HEDLEY_COMPCERT_VERSION
413 #endif
414 #if defined(__COMPCERT_VERSION__)
415  #define JSON_HEDLEY_COMPCERT_VERSION JSON_HEDLEY_VERSION_ENCODE(__COMPCERT_VERSION__ / 10000, (__COMPCERT_VERSION__ / 100) % 100, __COMPCERT_VERSION__ % 100)
416 #endif
417 
418 #if defined(JSON_HEDLEY_COMPCERT_VERSION_CHECK)
419  #undef JSON_HEDLEY_COMPCERT_VERSION_CHECK
420 #endif
421 #if defined(JSON_HEDLEY_COMPCERT_VERSION)
422  #define JSON_HEDLEY_COMPCERT_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_COMPCERT_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
423 #else
424  #define JSON_HEDLEY_COMPCERT_VERSION_CHECK(major,minor,patch) (0)
425 #endif
426 
427 #if defined(JSON_HEDLEY_PELLES_VERSION)
428  #undef JSON_HEDLEY_PELLES_VERSION
429 #endif
430 #if defined(__POCC__)
431  #define JSON_HEDLEY_PELLES_VERSION JSON_HEDLEY_VERSION_ENCODE(__POCC__ / 100, __POCC__ % 100, 0)
432 #endif
433 
434 #if defined(JSON_HEDLEY_PELLES_VERSION_CHECK)
435  #undef JSON_HEDLEY_PELLES_VERSION_CHECK
436 #endif
437 #if defined(JSON_HEDLEY_PELLES_VERSION)
438  #define JSON_HEDLEY_PELLES_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_PELLES_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
439 #else
440  #define JSON_HEDLEY_PELLES_VERSION_CHECK(major,minor,patch) (0)
441 #endif
442 
443 #if defined(JSON_HEDLEY_GCC_VERSION)
444  #undef JSON_HEDLEY_GCC_VERSION
445 #endif
446 #if \
447  defined(JSON_HEDLEY_GNUC_VERSION) && \
448  !defined(__clang__) && \
449  !defined(JSON_HEDLEY_INTEL_VERSION) && \
450  !defined(JSON_HEDLEY_PGI_VERSION) && \
451  !defined(JSON_HEDLEY_ARM_VERSION) && \
452  !defined(JSON_HEDLEY_TI_VERSION) && \
453  !defined(__COMPCERT__)
454  #define JSON_HEDLEY_GCC_VERSION JSON_HEDLEY_GNUC_VERSION
455 #endif
456 
457 #if defined(JSON_HEDLEY_GCC_VERSION_CHECK)
458  #undef JSON_HEDLEY_GCC_VERSION_CHECK
459 #endif
460 #if defined(JSON_HEDLEY_GCC_VERSION)
461  #define JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_GCC_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
462 #else
463  #define JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch) (0)
464 #endif
465 
466 #if defined(JSON_HEDLEY_HAS_ATTRIBUTE)
467  #undef JSON_HEDLEY_HAS_ATTRIBUTE
468 #endif
469 #if defined(__has_attribute)
470  #define JSON_HEDLEY_HAS_ATTRIBUTE(attribute) __has_attribute(attribute)
471 #else
472  #define JSON_HEDLEY_HAS_ATTRIBUTE(attribute) (0)
473 #endif
474 
475 #if defined(JSON_HEDLEY_GNUC_HAS_ATTRIBUTE)
476  #undef JSON_HEDLEY_GNUC_HAS_ATTRIBUTE
477 #endif
478 #if defined(__has_attribute)
479  #define JSON_HEDLEY_GNUC_HAS_ATTRIBUTE(attribute,major,minor,patch) __has_attribute(attribute)
480 #else
481  #define JSON_HEDLEY_GNUC_HAS_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
482 #endif
483 
484 #if defined(JSON_HEDLEY_GCC_HAS_ATTRIBUTE)
485  #undef JSON_HEDLEY_GCC_HAS_ATTRIBUTE
486 #endif
487 #if defined(__has_attribute)
488  #define JSON_HEDLEY_GCC_HAS_ATTRIBUTE(attribute,major,minor,patch) __has_attribute(attribute)
489 #else
490  #define JSON_HEDLEY_GCC_HAS_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
491 #endif
492 
493 #if defined(JSON_HEDLEY_HAS_CPP_ATTRIBUTE)
494  #undef JSON_HEDLEY_HAS_CPP_ATTRIBUTE
495 #endif
496 #if \
497  defined(__has_cpp_attribute) && \
498  defined(__cplusplus) && \
499  (!defined(JSON_HEDLEY_SUNPRO_VERSION) || JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,15,0))
500  #define JSON_HEDLEY_HAS_CPP_ATTRIBUTE(attribute) __has_cpp_attribute(attribute)
501 #else
502  #define JSON_HEDLEY_HAS_CPP_ATTRIBUTE(attribute) (0)
503 #endif
504 
505 #if defined(JSON_HEDLEY_HAS_CPP_ATTRIBUTE_NS)
506  #undef JSON_HEDLEY_HAS_CPP_ATTRIBUTE_NS
507 #endif
508 #if !defined(__cplusplus) || !defined(__has_cpp_attribute)
509  #define JSON_HEDLEY_HAS_CPP_ATTRIBUTE_NS(ns,attribute) (0)
510 #elif \
511  !defined(JSON_HEDLEY_PGI_VERSION) && \
512  (!defined(JSON_HEDLEY_SUNPRO_VERSION) || JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,15,0)) && \
513  (!defined(JSON_HEDLEY_MSVC_VERSION) || JSON_HEDLEY_MSVC_VERSION_CHECK(19,20,0))
514  #define JSON_HEDLEY_HAS_CPP_ATTRIBUTE_NS(ns,attribute) JSON_HEDLEY_HAS_CPP_ATTRIBUTE(ns::attribute)
515 #else
516  #define JSON_HEDLEY_HAS_CPP_ATTRIBUTE_NS(ns,attribute) (0)
517 #endif
518 
519 #if defined(JSON_HEDLEY_GNUC_HAS_CPP_ATTRIBUTE)
520  #undef JSON_HEDLEY_GNUC_HAS_CPP_ATTRIBUTE
521 #endif
522 #if defined(__has_cpp_attribute) && defined(__cplusplus)
523  #define JSON_HEDLEY_GNUC_HAS_CPP_ATTRIBUTE(attribute,major,minor,patch) __has_cpp_attribute(attribute)
524 #else
525  #define JSON_HEDLEY_GNUC_HAS_CPP_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
526 #endif
527 
528 #if defined(JSON_HEDLEY_GCC_HAS_CPP_ATTRIBUTE)
529  #undef JSON_HEDLEY_GCC_HAS_CPP_ATTRIBUTE
530 #endif
531 #if defined(__has_cpp_attribute) && defined(__cplusplus)
532  #define JSON_HEDLEY_GCC_HAS_CPP_ATTRIBUTE(attribute,major,minor,patch) __has_cpp_attribute(attribute)
533 #else
534  #define JSON_HEDLEY_GCC_HAS_CPP_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
535 #endif
536 
537 #if defined(JSON_HEDLEY_HAS_BUILTIN)
538  #undef JSON_HEDLEY_HAS_BUILTIN
539 #endif
540 #if defined(__has_builtin)
541  #define JSON_HEDLEY_HAS_BUILTIN(builtin) __has_builtin(builtin)
542 #else
543  #define JSON_HEDLEY_HAS_BUILTIN(builtin) (0)
544 #endif
545 
546 #if defined(JSON_HEDLEY_GNUC_HAS_BUILTIN)
547  #undef JSON_HEDLEY_GNUC_HAS_BUILTIN
548 #endif
549 #if defined(__has_builtin)
550  #define JSON_HEDLEY_GNUC_HAS_BUILTIN(builtin,major,minor,patch) __has_builtin(builtin)
551 #else
552  #define JSON_HEDLEY_GNUC_HAS_BUILTIN(builtin,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
553 #endif
554 
555 #if defined(JSON_HEDLEY_GCC_HAS_BUILTIN)
556  #undef JSON_HEDLEY_GCC_HAS_BUILTIN
557 #endif
558 #if defined(__has_builtin)
559  #define JSON_HEDLEY_GCC_HAS_BUILTIN(builtin,major,minor,patch) __has_builtin(builtin)
560 #else
561  #define JSON_HEDLEY_GCC_HAS_BUILTIN(builtin,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
562 #endif
563 
564 #if defined(JSON_HEDLEY_HAS_FEATURE)
565  #undef JSON_HEDLEY_HAS_FEATURE
566 #endif
567 #if defined(__has_feature)
568  #define JSON_HEDLEY_HAS_FEATURE(feature) __has_feature(feature)
569 #else
570  #define JSON_HEDLEY_HAS_FEATURE(feature) (0)
571 #endif
572 
573 #if defined(JSON_HEDLEY_GNUC_HAS_FEATURE)
574  #undef JSON_HEDLEY_GNUC_HAS_FEATURE
575 #endif
576 #if defined(__has_feature)
577  #define JSON_HEDLEY_GNUC_HAS_FEATURE(feature,major,minor,patch) __has_feature(feature)
578 #else
579  #define JSON_HEDLEY_GNUC_HAS_FEATURE(feature,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
580 #endif
581 
582 #if defined(JSON_HEDLEY_GCC_HAS_FEATURE)
583  #undef JSON_HEDLEY_GCC_HAS_FEATURE
584 #endif
585 #if defined(__has_feature)
586  #define JSON_HEDLEY_GCC_HAS_FEATURE(feature,major,minor,patch) __has_feature(feature)
587 #else
588  #define JSON_HEDLEY_GCC_HAS_FEATURE(feature,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
589 #endif
590 
591 #if defined(JSON_HEDLEY_HAS_EXTENSION)
592  #undef JSON_HEDLEY_HAS_EXTENSION
593 #endif
594 #if defined(__has_extension)
595  #define JSON_HEDLEY_HAS_EXTENSION(extension) __has_extension(extension)
596 #else
597  #define JSON_HEDLEY_HAS_EXTENSION(extension) (0)
598 #endif
599 
600 #if defined(JSON_HEDLEY_GNUC_HAS_EXTENSION)
601  #undef JSON_HEDLEY_GNUC_HAS_EXTENSION
602 #endif
603 #if defined(__has_extension)
604  #define JSON_HEDLEY_GNUC_HAS_EXTENSION(extension,major,minor,patch) __has_extension(extension)
605 #else
606  #define JSON_HEDLEY_GNUC_HAS_EXTENSION(extension,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
607 #endif
608 
609 #if defined(JSON_HEDLEY_GCC_HAS_EXTENSION)
610  #undef JSON_HEDLEY_GCC_HAS_EXTENSION
611 #endif
612 #if defined(__has_extension)
613  #define JSON_HEDLEY_GCC_HAS_EXTENSION(extension,major,minor,patch) __has_extension(extension)
614 #else
615  #define JSON_HEDLEY_GCC_HAS_EXTENSION(extension,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
616 #endif
617 
618 #if defined(JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE)
619  #undef JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE
620 #endif
621 #if defined(__has_declspec_attribute)
622  #define JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE(attribute) __has_declspec_attribute(attribute)
623 #else
624  #define JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE(attribute) (0)
625 #endif
626 
627 #if defined(JSON_HEDLEY_GNUC_HAS_DECLSPEC_ATTRIBUTE)
628  #undef JSON_HEDLEY_GNUC_HAS_DECLSPEC_ATTRIBUTE
629 #endif
630 #if defined(__has_declspec_attribute)
631  #define JSON_HEDLEY_GNUC_HAS_DECLSPEC_ATTRIBUTE(attribute,major,minor,patch) __has_declspec_attribute(attribute)
632 #else
633  #define JSON_HEDLEY_GNUC_HAS_DECLSPEC_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
634 #endif
635 
636 #if defined(JSON_HEDLEY_GCC_HAS_DECLSPEC_ATTRIBUTE)
637  #undef JSON_HEDLEY_GCC_HAS_DECLSPEC_ATTRIBUTE
638 #endif
639 #if defined(__has_declspec_attribute)
640  #define JSON_HEDLEY_GCC_HAS_DECLSPEC_ATTRIBUTE(attribute,major,minor,patch) __has_declspec_attribute(attribute)
641 #else
642  #define JSON_HEDLEY_GCC_HAS_DECLSPEC_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
643 #endif
644 
645 #if defined(JSON_HEDLEY_HAS_WARNING)
646  #undef JSON_HEDLEY_HAS_WARNING
647 #endif
648 #if defined(__has_warning)
649  #define JSON_HEDLEY_HAS_WARNING(warning) __has_warning(warning)
650 #else
651  #define JSON_HEDLEY_HAS_WARNING(warning) (0)
652 #endif
653 
654 #if defined(JSON_HEDLEY_GNUC_HAS_WARNING)
655  #undef JSON_HEDLEY_GNUC_HAS_WARNING
656 #endif
657 #if defined(__has_warning)
658  #define JSON_HEDLEY_GNUC_HAS_WARNING(warning,major,minor,patch) __has_warning(warning)
659 #else
660  #define JSON_HEDLEY_GNUC_HAS_WARNING(warning,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
661 #endif
662 
663 #if defined(JSON_HEDLEY_GCC_HAS_WARNING)
664  #undef JSON_HEDLEY_GCC_HAS_WARNING
665 #endif
666 #if defined(__has_warning)
667  #define JSON_HEDLEY_GCC_HAS_WARNING(warning,major,minor,patch) __has_warning(warning)
668 #else
669  #define JSON_HEDLEY_GCC_HAS_WARNING(warning,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
670 #endif
671 
672 /* JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_ is for
673  HEDLEY INTERNAL USE ONLY. API subject to change without notice. */
674 #if defined(JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_)
675  #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_
676 #endif
677 #if defined(__cplusplus) && JSON_HEDLEY_HAS_WARNING("-Wc++98-compat")
678 # define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_(xpr) \
679  JSON_HEDLEY_DIAGNOSTIC_PUSH \
680  _Pragma("clang diagnostic ignored \"-Wc++98-compat\"") \
681  xpr \
682  JSON_HEDLEY_DIAGNOSTIC_POP
683 #else
684 # define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_(x) x
685 #endif
686 
687 #if \
688  (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) || \
689  defined(__clang__) || \
690  JSON_HEDLEY_GCC_VERSION_CHECK(3,0,0) || \
691  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
692  JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0) || \
693  JSON_HEDLEY_PGI_VERSION_CHECK(18,4,0) || \
694  JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
695  JSON_HEDLEY_TI_VERSION_CHECK(6,0,0) || \
696  JSON_HEDLEY_CRAY_VERSION_CHECK(5,0,0) || \
697  JSON_HEDLEY_TINYC_VERSION_CHECK(0,9,17) || \
698  JSON_HEDLEY_SUNPRO_VERSION_CHECK(8,0,0) || \
699  (JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) && defined(__C99_PRAGMA_OPERATOR))
700  #define JSON_HEDLEY_PRAGMA(value) _Pragma(#value)
701 #elif JSON_HEDLEY_MSVC_VERSION_CHECK(15,0,0)
702  #define JSON_HEDLEY_PRAGMA(value) __pragma(value)
703 #else
704  #define JSON_HEDLEY_PRAGMA(value)
705 #endif
706 
707 #if defined(JSON_HEDLEY_DIAGNOSTIC_PUSH)
708  #undef JSON_HEDLEY_DIAGNOSTIC_PUSH
709 #endif
710 #if defined(JSON_HEDLEY_DIAGNOSTIC_POP)
711  #undef JSON_HEDLEY_DIAGNOSTIC_POP
712 #endif
713 #if defined(__clang__)
714  #define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("clang diagnostic push")
715  #define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("clang diagnostic pop")
716 #elif JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
717  #define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("warning(push)")
718  #define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("warning(pop)")
719 #elif JSON_HEDLEY_GCC_VERSION_CHECK(4,6,0)
720  #define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("GCC diagnostic push")
721  #define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("GCC diagnostic pop")
722 #elif JSON_HEDLEY_MSVC_VERSION_CHECK(15,0,0)
723  #define JSON_HEDLEY_DIAGNOSTIC_PUSH __pragma(warning(push))
724  #define JSON_HEDLEY_DIAGNOSTIC_POP __pragma(warning(pop))
725 #elif JSON_HEDLEY_ARM_VERSION_CHECK(5,6,0)
726  #define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("push")
727  #define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("pop")
728 #elif JSON_HEDLEY_TI_VERSION_CHECK(8,1,0)
729  #define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("diag_push")
730  #define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("diag_pop")
731 #elif JSON_HEDLEY_PELLES_VERSION_CHECK(2,90,0)
732  #define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("warning(push)")
733  #define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("warning(pop)")
734 #else
735  #define JSON_HEDLEY_DIAGNOSTIC_PUSH
736  #define JSON_HEDLEY_DIAGNOSTIC_POP
737 #endif
738 
739 #if defined(JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED)
740  #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED
741 #endif
742 #if JSON_HEDLEY_HAS_WARNING("-Wdeprecated-declarations")
743  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("clang diagnostic ignored \"-Wdeprecated-declarations\"")
744 #elif JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
745  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("warning(disable:1478 1786)")
746 #elif JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0)
747  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("diag_suppress 1215,1444")
748 #elif JSON_HEDLEY_GCC_VERSION_CHECK(4,3,0)
749  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("GCC diagnostic ignored \"-Wdeprecated-declarations\"")
750 #elif JSON_HEDLEY_MSVC_VERSION_CHECK(15,0,0)
751  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED __pragma(warning(disable:4996))
752 #elif JSON_HEDLEY_TI_VERSION_CHECK(8,0,0)
753  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("diag_suppress 1291,1718")
754 #elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,13,0) && !defined(__cplusplus)
755  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("error_messages(off,E_DEPRECATED_ATT,E_DEPRECATED_ATT_MESS)")
756 #elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,13,0) && defined(__cplusplus)
757  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("error_messages(off,symdeprecated,symdeprecated2)")
758 #elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
759  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("diag_suppress=Pe1444,Pe1215")
760 #elif JSON_HEDLEY_PELLES_VERSION_CHECK(2,90,0)
761  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("warn(disable:2241)")
762 #else
763  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED
764 #endif
765 
766 #if defined(JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS)
767  #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS
768 #endif
769 #if JSON_HEDLEY_HAS_WARNING("-Wunknown-pragmas")
770  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("clang diagnostic ignored \"-Wunknown-pragmas\"")
771 #elif JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
772  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("warning(disable:161)")
773 #elif JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0)
774  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("diag_suppress 1675")
775 #elif JSON_HEDLEY_GCC_VERSION_CHECK(4,3,0)
776  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("GCC diagnostic ignored \"-Wunknown-pragmas\"")
777 #elif JSON_HEDLEY_MSVC_VERSION_CHECK(15,0,0)
778  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS __pragma(warning(disable:4068))
779 #elif JSON_HEDLEY_TI_VERSION_CHECK(8,0,0)
780  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("diag_suppress 163")
781 #elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
782  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("diag_suppress=Pe161")
783 #else
784  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS
785 #endif
786 
787 #if defined(JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES)
788  #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES
789 #endif
790 #if JSON_HEDLEY_HAS_WARNING("-Wunknown-attributes")
791  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES _Pragma("clang diagnostic ignored \"-Wunknown-attributes\"")
792 #elif JSON_HEDLEY_GCC_VERSION_CHECK(4,6,0)
793  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES _Pragma("GCC diagnostic ignored \"-Wdeprecated-declarations\"")
794 #elif JSON_HEDLEY_INTEL_VERSION_CHECK(17,0,0)
795  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES _Pragma("warning(disable:1292)")
796 #elif JSON_HEDLEY_MSVC_VERSION_CHECK(19,0,0)
797  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES __pragma(warning(disable:5030))
798 #elif JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0)
799  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES _Pragma("diag_suppress 1097")
800 #elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,14,0) && defined(__cplusplus)
801  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES _Pragma("error_messages(off,attrskipunsup)")
802 #elif JSON_HEDLEY_TI_VERSION_CHECK(8,0,0)
803  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES _Pragma("diag_suppress 1173")
804 #else
805  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES
806 #endif
807 
808 #if defined(JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL)
809  #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL
810 #endif
811 #if JSON_HEDLEY_HAS_WARNING("-Wcast-qual")
812  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL _Pragma("clang diagnostic ignored \"-Wcast-qual\"")
813 #elif JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
814  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL _Pragma("warning(disable:2203 2331)")
815 #elif JSON_HEDLEY_GCC_VERSION_CHECK(3,0,0)
816  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL _Pragma("GCC diagnostic ignored \"-Wcast-qual\"")
817 #else
818  #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL
819 #endif
820 
821 #if defined(JSON_HEDLEY_DEPRECATED)
822  #undef JSON_HEDLEY_DEPRECATED
823 #endif
824 #if defined(JSON_HEDLEY_DEPRECATED_FOR)
825  #undef JSON_HEDLEY_DEPRECATED_FOR
826 #endif
827 #if defined(__cplusplus) && (__cplusplus >= 201402L)
828  #define JSON_HEDLEY_DEPRECATED(since) JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_([[deprecated("Since " #since)]])
829  #define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_([[deprecated("Since " #since "; use " #replacement)]])
830 #elif \
831  JSON_HEDLEY_HAS_EXTENSION(attribute_deprecated_with_message) || \
832  JSON_HEDLEY_GCC_VERSION_CHECK(4,5,0) || \
833  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
834  JSON_HEDLEY_ARM_VERSION_CHECK(5,6,0) || \
835  JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,13,0) || \
836  JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0) || \
837  JSON_HEDLEY_TI_VERSION_CHECK(8,3,0)
838  #define JSON_HEDLEY_DEPRECATED(since) __attribute__((__deprecated__("Since " #since)))
839  #define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) __attribute__((__deprecated__("Since " #since "; use " #replacement)))
840 #elif \
841  JSON_HEDLEY_HAS_ATTRIBUTE(deprecated) || \
842  JSON_HEDLEY_GCC_VERSION_CHECK(3,1,0) || \
843  JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
844  JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
845  (JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__))
846  #define JSON_HEDLEY_DEPRECATED(since) __attribute__((__deprecated__))
847  #define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) __attribute__((__deprecated__))
848 #elif JSON_HEDLEY_MSVC_VERSION_CHECK(14,0,0)
849  #define JSON_HEDLEY_DEPRECATED(since) __declspec(deprecated("Since " # since))
850  #define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) __declspec(deprecated("Since " #since "; use " #replacement))
851 #elif \
852  JSON_HEDLEY_MSVC_VERSION_CHECK(13,10,0) || \
853  JSON_HEDLEY_PELLES_VERSION_CHECK(6,50,0)
854  #define JSON_HEDLEY_DEPRECATED(since) __declspec(deprecated)
855  #define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) __declspec(deprecated)
856 #elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
857  #define JSON_HEDLEY_DEPRECATED(since) _Pragma("deprecated")
858  #define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) _Pragma("deprecated")
859 #else
860  #define JSON_HEDLEY_DEPRECATED(since)
861  #define JSON_HEDLEY_DEPRECATED_FOR(since, replacement)
862 #endif
863 
864 #if defined(JSON_HEDLEY_UNAVAILABLE)
865  #undef JSON_HEDLEY_UNAVAILABLE
866 #endif
867 #if \
868  JSON_HEDLEY_HAS_ATTRIBUTE(warning) || \
869  JSON_HEDLEY_GCC_VERSION_CHECK(4,3,0) || \
870  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
871  #define JSON_HEDLEY_UNAVAILABLE(available_since) __attribute__((__warning__("Not available until " #available_since)))
872 #else
873  #define JSON_HEDLEY_UNAVAILABLE(available_since)
874 #endif
875 
876 #if defined(JSON_HEDLEY_WARN_UNUSED_RESULT)
877  #undef JSON_HEDLEY_WARN_UNUSED_RESULT
878 #endif
879 #if defined(__cplusplus) && (__cplusplus >= 201703L)
880  #define JSON_HEDLEY_WARN_UNUSED_RESULT JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_([[nodiscard]])
881 #elif \
882  JSON_HEDLEY_HAS_ATTRIBUTE(warn_unused_result) || \
883  JSON_HEDLEY_GCC_VERSION_CHECK(3,4,0) || \
884  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
885  JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
886  (JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
887  (JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,15,0) && defined(__cplusplus)) || \
888  JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0)
889  #define JSON_HEDLEY_WARN_UNUSED_RESULT __attribute__((__warn_unused_result__))
890 #elif defined(_Check_return_) /* SAL */
891  #define JSON_HEDLEY_WARN_UNUSED_RESULT _Check_return_
892 #else
893  #define JSON_HEDLEY_WARN_UNUSED_RESULT
894 #endif
895 
896 #if defined(JSON_HEDLEY_SENTINEL)
897  #undef JSON_HEDLEY_SENTINEL
898 #endif
899 #if \
900  JSON_HEDLEY_HAS_ATTRIBUTE(sentinel) || \
901  JSON_HEDLEY_GCC_VERSION_CHECK(4,0,0) || \
902  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
903  JSON_HEDLEY_ARM_VERSION_CHECK(5,4,0)
904  #define JSON_HEDLEY_SENTINEL(position) __attribute__((__sentinel__(position)))
905 #else
906  #define JSON_HEDLEY_SENTINEL(position)
907 #endif
908 
909 #if defined(JSON_HEDLEY_NO_RETURN)
910  #undef JSON_HEDLEY_NO_RETURN
911 #endif
912 #if JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
913  #define JSON_HEDLEY_NO_RETURN __noreturn
914 #elif JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
915  #define JSON_HEDLEY_NO_RETURN __attribute__((__noreturn__))
916 #elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L
917  #define JSON_HEDLEY_NO_RETURN _Noreturn
918 #elif defined(__cplusplus) && (__cplusplus >= 201103L)
919  #define JSON_HEDLEY_NO_RETURN JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_([[noreturn]])
920 #elif \
921  JSON_HEDLEY_HAS_ATTRIBUTE(noreturn) || \
922  JSON_HEDLEY_GCC_VERSION_CHECK(3,2,0) || \
923  JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
924  JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
925  JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
926  JSON_HEDLEY_TI_VERSION_CHECK(18,0,0) || \
927  (JSON_HEDLEY_TI_VERSION_CHECK(17,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__))
928  #define JSON_HEDLEY_NO_RETURN __attribute__((__noreturn__))
929 #elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,10,0)
930  #define JSON_HEDLEY_NO_RETURN _Pragma("does_not_return")
931 #elif JSON_HEDLEY_MSVC_VERSION_CHECK(13,10,0)
932  #define JSON_HEDLEY_NO_RETURN __declspec(noreturn)
933 #elif JSON_HEDLEY_TI_VERSION_CHECK(6,0,0) && defined(__cplusplus)
934  #define JSON_HEDLEY_NO_RETURN _Pragma("FUNC_NEVER_RETURNS;")
935 #elif JSON_HEDLEY_COMPCERT_VERSION_CHECK(3,2,0)
936  #define JSON_HEDLEY_NO_RETURN __attribute((noreturn))
937 #elif JSON_HEDLEY_PELLES_VERSION_CHECK(9,0,0)
938  #define JSON_HEDLEY_NO_RETURN __declspec(noreturn)
939 #else
940  #define JSON_HEDLEY_NO_RETURN
941 #endif
942 
943 #if defined(JSON_HEDLEY_NO_ESCAPE)
944  #undef JSON_HEDLEY_NO_ESCAPE
945 #endif
946 #if JSON_HEDLEY_HAS_ATTRIBUTE(noescape)
947  #define JSON_HEDLEY_NO_ESCAPE __attribute__((__noescape__))
948 #else
949  #define JSON_HEDLEY_NO_ESCAPE
950 #endif
951 
952 #if defined(JSON_HEDLEY_UNREACHABLE)
953  #undef JSON_HEDLEY_UNREACHABLE
954 #endif
955 #if defined(JSON_HEDLEY_UNREACHABLE_RETURN)
956  #undef JSON_HEDLEY_UNREACHABLE_RETURN
957 #endif
958 #if \
959  (JSON_HEDLEY_HAS_BUILTIN(__builtin_unreachable) && (!defined(JSON_HEDLEY_ARM_VERSION))) || \
960  JSON_HEDLEY_GCC_VERSION_CHECK(4,5,0) || \
961  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
962  JSON_HEDLEY_IBM_VERSION_CHECK(13,1,5)
963  #define JSON_HEDLEY_UNREACHABLE() __builtin_unreachable()
964 #elif JSON_HEDLEY_MSVC_VERSION_CHECK(13,10,0)
965  #define JSON_HEDLEY_UNREACHABLE() __assume(0)
966 #elif JSON_HEDLEY_TI_VERSION_CHECK(6,0,0)
967  #if defined(__cplusplus)
968  #define JSON_HEDLEY_UNREACHABLE() std::_nassert(0)
969  #else
970  #define JSON_HEDLEY_UNREACHABLE() _nassert(0)
971  #endif
972  #define JSON_HEDLEY_UNREACHABLE_RETURN(value) return value
973 #elif defined(EXIT_FAILURE)
974  #define JSON_HEDLEY_UNREACHABLE() abort()
975 #else
976  #define JSON_HEDLEY_UNREACHABLE()
977  #define JSON_HEDLEY_UNREACHABLE_RETURN(value) return value
978 #endif
979 #if !defined(JSON_HEDLEY_UNREACHABLE_RETURN)
980  #define JSON_HEDLEY_UNREACHABLE_RETURN(value) JSON_HEDLEY_UNREACHABLE()
981 #endif
982 
983 #if defined(JSON_HEDLEY_ASSUME)
984  #undef JSON_HEDLEY_ASSUME
985 #endif
986 #if \
987  JSON_HEDLEY_MSVC_VERSION_CHECK(13,10,0) || \
988  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
989  #define JSON_HEDLEY_ASSUME(expr) __assume(expr)
990 #elif JSON_HEDLEY_HAS_BUILTIN(__builtin_assume)
991  #define JSON_HEDLEY_ASSUME(expr) __builtin_assume(expr)
992 #elif JSON_HEDLEY_TI_VERSION_CHECK(6,0,0)
993  #if defined(__cplusplus)
994  #define JSON_HEDLEY_ASSUME(expr) std::_nassert(expr)
995  #else
996  #define JSON_HEDLEY_ASSUME(expr) _nassert(expr)
997  #endif
998 #elif \
999  (JSON_HEDLEY_HAS_BUILTIN(__builtin_unreachable) && !defined(JSON_HEDLEY_ARM_VERSION)) || \
1000  JSON_HEDLEY_GCC_VERSION_CHECK(4,5,0) || \
1001  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1002  JSON_HEDLEY_IBM_VERSION_CHECK(13,1,5)
1003  #define JSON_HEDLEY_ASSUME(expr) ((void) ((expr) ? 1 : (__builtin_unreachable(), 1)))
1004 #else
1005  #define JSON_HEDLEY_ASSUME(expr) ((void) (expr))
1006 #endif
1007 
1009 #if JSON_HEDLEY_HAS_WARNING("-Wpedantic")
1010  #pragma clang diagnostic ignored "-Wpedantic"
1011 #endif
1012 #if JSON_HEDLEY_HAS_WARNING("-Wc++98-compat-pedantic") && defined(__cplusplus)
1013  #pragma clang diagnostic ignored "-Wc++98-compat-pedantic"
1014 #endif
1015 #if JSON_HEDLEY_GCC_HAS_WARNING("-Wvariadic-macros",4,0,0)
1016  #if defined(__clang__)
1017  #pragma clang diagnostic ignored "-Wvariadic-macros"
1018  #elif defined(JSON_HEDLEY_GCC_VERSION)
1019  #pragma GCC diagnostic ignored "-Wvariadic-macros"
1020  #endif
1021 #endif
1022 #if defined(JSON_HEDLEY_NON_NULL)
1023  #undef JSON_HEDLEY_NON_NULL
1024 #endif
1025 #if \
1026  JSON_HEDLEY_HAS_ATTRIBUTE(nonnull) || \
1027  JSON_HEDLEY_GCC_VERSION_CHECK(3,3,0) || \
1028  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1029  JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0)
1030  #define JSON_HEDLEY_NON_NULL(...) __attribute__((__nonnull__(__VA_ARGS__)))
1031 #else
1032  #define JSON_HEDLEY_NON_NULL(...)
1033 #endif
1035 
1036 #if defined(JSON_HEDLEY_PRINTF_FORMAT)
1037  #undef JSON_HEDLEY_PRINTF_FORMAT
1038 #endif
1039 #if defined(__MINGW32__) && JSON_HEDLEY_GCC_HAS_ATTRIBUTE(format,4,4,0) && !defined(__USE_MINGW_ANSI_STDIO)
1040  #define JSON_HEDLEY_PRINTF_FORMAT(string_idx,first_to_check) __attribute__((__format__(ms_printf, string_idx, first_to_check)))
1041 #elif defined(__MINGW32__) && JSON_HEDLEY_GCC_HAS_ATTRIBUTE(format,4,4,0) && defined(__USE_MINGW_ANSI_STDIO)
1042  #define JSON_HEDLEY_PRINTF_FORMAT(string_idx,first_to_check) __attribute__((__format__(gnu_printf, string_idx, first_to_check)))
1043 #elif \
1044  JSON_HEDLEY_HAS_ATTRIBUTE(format) || \
1045  JSON_HEDLEY_GCC_VERSION_CHECK(3,1,0) || \
1046  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1047  JSON_HEDLEY_ARM_VERSION_CHECK(5,6,0) || \
1048  JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
1049  JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
1050  (JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__))
1051  #define JSON_HEDLEY_PRINTF_FORMAT(string_idx,first_to_check) __attribute__((__format__(__printf__, string_idx, first_to_check)))
1052 #elif JSON_HEDLEY_PELLES_VERSION_CHECK(6,0,0)
1053  #define JSON_HEDLEY_PRINTF_FORMAT(string_idx,first_to_check) __declspec(vaformat(printf,string_idx,first_to_check))
1054 #else
1055  #define JSON_HEDLEY_PRINTF_FORMAT(string_idx,first_to_check)
1056 #endif
1057 
1058 #if defined(JSON_HEDLEY_CONSTEXPR)
1059  #undef JSON_HEDLEY_CONSTEXPR
1060 #endif
1061 #if defined(__cplusplus)
1062  #if __cplusplus >= 201103L
1063  #define JSON_HEDLEY_CONSTEXPR JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_(constexpr)
1064  #endif
1065 #endif
1066 #if !defined(JSON_HEDLEY_CONSTEXPR)
1067  #define JSON_HEDLEY_CONSTEXPR
1068 #endif
1069 
1070 #if defined(JSON_HEDLEY_PREDICT)
1071  #undef JSON_HEDLEY_PREDICT
1072 #endif
1073 #if defined(JSON_HEDLEY_LIKELY)
1074  #undef JSON_HEDLEY_LIKELY
1075 #endif
1076 #if defined(JSON_HEDLEY_UNLIKELY)
1077  #undef JSON_HEDLEY_UNLIKELY
1078 #endif
1079 #if defined(JSON_HEDLEY_UNPREDICTABLE)
1080  #undef JSON_HEDLEY_UNPREDICTABLE
1081 #endif
1082 #if JSON_HEDLEY_HAS_BUILTIN(__builtin_unpredictable)
1083  #define JSON_HEDLEY_UNPREDICTABLE(expr) __builtin_unpredictable(!!(expr))
1084 #endif
1085 #if \
1086  JSON_HEDLEY_HAS_BUILTIN(__builtin_expect_with_probability) || \
1087  JSON_HEDLEY_GCC_VERSION_CHECK(9,0,0)
1088 # define JSON_HEDLEY_PREDICT(expr, value, probability) __builtin_expect_with_probability(expr, value, probability)
1089 # define JSON_HEDLEY_PREDICT_TRUE(expr, probability) __builtin_expect_with_probability(!!(expr), 1, probability)
1090 # define JSON_HEDLEY_PREDICT_FALSE(expr, probability) __builtin_expect_with_probability(!!(expr), 0, probability)
1091 # define JSON_HEDLEY_LIKELY(expr) __builtin_expect(!!(expr), 1)
1092 # define JSON_HEDLEY_UNLIKELY(expr) __builtin_expect(!!(expr), 0)
1093 #if !defined(JSON_HEDLEY_BUILTIN_UNPREDICTABLE)
1094  #define JSON_HEDLEY_BUILTIN_UNPREDICTABLE(expr) __builtin_expect_with_probability(!!(expr), 1, 0.5)
1095 #endif
1096 #elif \
1097  JSON_HEDLEY_HAS_BUILTIN(__builtin_expect) || \
1098  JSON_HEDLEY_GCC_VERSION_CHECK(3,0,0) || \
1099  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1100  (JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,15,0) && defined(__cplusplus)) || \
1101  JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1102  JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
1103  JSON_HEDLEY_TI_VERSION_CHECK(6,1,0) || \
1104  JSON_HEDLEY_TINYC_VERSION_CHECK(0,9,27)
1105 # define JSON_HEDLEY_PREDICT(expr, expected, probability) \
1106  (((probability) >= 0.9) ? __builtin_expect(!!(expr), (expected)) : (((void) (expected)), !!(expr)))
1107 # define JSON_HEDLEY_PREDICT_TRUE(expr, probability) \
1108  (__extension__ ({ \
1109  JSON_HEDLEY_CONSTEXPR double hedley_probability_ = (probability); \
1110  ((hedley_probability_ >= 0.9) ? __builtin_expect(!!(expr), 1) : ((hedley_probability_ <= 0.1) ? __builtin_expect(!!(expr), 0) : !!(expr))); \
1111  }))
1112 # define JSON_HEDLEY_PREDICT_FALSE(expr, probability) \
1113  (__extension__ ({ \
1114  JSON_HEDLEY_CONSTEXPR double hedley_probability_ = (probability); \
1115  ((hedley_probability_ >= 0.9) ? __builtin_expect(!!(expr), 0) : ((hedley_probability_ <= 0.1) ? __builtin_expect(!!(expr), 1) : !!(expr))); \
1116  }))
1117 # define JSON_HEDLEY_LIKELY(expr) __builtin_expect(!!(expr), 1)
1118 # define JSON_HEDLEY_UNLIKELY(expr) __builtin_expect(!!(expr), 0)
1119 #else
1120 # define JSON_HEDLEY_PREDICT(expr, expected, probability) (((void) (expected)), !!(expr))
1121 # define JSON_HEDLEY_PREDICT_TRUE(expr, probability) (!!(expr))
1122 # define JSON_HEDLEY_PREDICT_FALSE(expr, probability) (!!(expr))
1123 # define JSON_HEDLEY_LIKELY(expr) (!!(expr))
1124 # define JSON_HEDLEY_UNLIKELY(expr) (!!(expr))
1125 #endif
1126 #if !defined(JSON_HEDLEY_UNPREDICTABLE)
1127  #define JSON_HEDLEY_UNPREDICTABLE(expr) JSON_HEDLEY_PREDICT(expr, 1, 0.5)
1128 #endif
1129 
1130 #if defined(JSON_HEDLEY_MALLOC)
1131  #undef JSON_HEDLEY_MALLOC
1132 #endif
1133 #if \
1134  JSON_HEDLEY_HAS_ATTRIBUTE(malloc) || \
1135  JSON_HEDLEY_GCC_VERSION_CHECK(3,1,0) || \
1136  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1137  JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
1138  JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1139  JSON_HEDLEY_IBM_VERSION_CHECK(12,1,0) || \
1140  JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
1141  (JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__))
1142  #define JSON_HEDLEY_MALLOC __attribute__((__malloc__))
1143 #elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,10,0)
1144  #define JSON_HEDLEY_MALLOC _Pragma("returns_new_memory")
1145 #elif JSON_HEDLEY_MSVC_VERSION_CHECK(14, 0, 0)
1146  #define JSON_HEDLEY_MALLOC __declspec(restrict)
1147 #else
1148  #define JSON_HEDLEY_MALLOC
1149 #endif
1150 
1151 #if defined(JSON_HEDLEY_PURE)
1152  #undef JSON_HEDLEY_PURE
1153 #endif
1154 #if \
1155  JSON_HEDLEY_HAS_ATTRIBUTE(pure) || \
1156  JSON_HEDLEY_GCC_VERSION_CHECK(2,96,0) || \
1157  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1158  JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
1159  JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1160  JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
1161  JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
1162  (JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1163  JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0)
1164  #define JSON_HEDLEY_PURE __attribute__((__pure__))
1165 #elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,10,0)
1166  #define JSON_HEDLEY_PURE _Pragma("does_not_write_global_data")
1167 #elif JSON_HEDLEY_TI_VERSION_CHECK(6,0,0) && defined(__cplusplus)
1168  #define JSON_HEDLEY_PURE _Pragma("FUNC_IS_PURE;")
1169 #else
1170  #define JSON_HEDLEY_PURE
1171 #endif
1172 
1173 #if defined(JSON_HEDLEY_CONST)
1174  #undef JSON_HEDLEY_CONST
1175 #endif
1176 #if \
1177  JSON_HEDLEY_HAS_ATTRIBUTE(const) || \
1178  JSON_HEDLEY_GCC_VERSION_CHECK(2,5,0) || \
1179  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1180  JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
1181  JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1182  JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
1183  JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
1184  (JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1185  JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0)
1186  #define JSON_HEDLEY_CONST __attribute__((__const__))
1187 #elif \
1188  JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,10,0)
1189  #define JSON_HEDLEY_CONST _Pragma("no_side_effect")
1190 #else
1191  #define JSON_HEDLEY_CONST JSON_HEDLEY_PURE
1192 #endif
1193 
1194 #if defined(JSON_HEDLEY_RESTRICT)
1195  #undef JSON_HEDLEY_RESTRICT
1196 #endif
1197 #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) && !defined(__cplusplus)
1198  #define JSON_HEDLEY_RESTRICT restrict
1199 #elif \
1200  JSON_HEDLEY_GCC_VERSION_CHECK(3,1,0) || \
1201  JSON_HEDLEY_MSVC_VERSION_CHECK(14,0,0) || \
1202  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1203  JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1204  JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
1205  JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0) || \
1206  JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
1207  (JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,14,0) && defined(__cplusplus)) || \
1208  JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0) || \
1209  defined(__clang__)
1210  #define JSON_HEDLEY_RESTRICT __restrict
1211 #elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,3,0) && !defined(__cplusplus)
1212  #define JSON_HEDLEY_RESTRICT _Restrict
1213 #else
1214  #define JSON_HEDLEY_RESTRICT
1215 #endif
1216 
1217 #if defined(JSON_HEDLEY_INLINE)
1218  #undef JSON_HEDLEY_INLINE
1219 #endif
1220 #if \
1221  (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) || \
1222  (defined(__cplusplus) && (__cplusplus >= 199711L))
1223  #define JSON_HEDLEY_INLINE inline
1224 #elif \
1225  defined(JSON_HEDLEY_GCC_VERSION) || \
1226  JSON_HEDLEY_ARM_VERSION_CHECK(6,2,0)
1227  #define JSON_HEDLEY_INLINE __inline__
1228 #elif \
1229  JSON_HEDLEY_MSVC_VERSION_CHECK(12,0,0) || \
1230  JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1231  JSON_HEDLEY_TI_VERSION_CHECK(8,0,0)
1232  #define JSON_HEDLEY_INLINE __inline
1233 #else
1234  #define JSON_HEDLEY_INLINE
1235 #endif
1236 
1237 #if defined(JSON_HEDLEY_ALWAYS_INLINE)
1238  #undef JSON_HEDLEY_ALWAYS_INLINE
1239 #endif
1240 #if \
1241  JSON_HEDLEY_HAS_ATTRIBUTE(always_inline) || \
1242  JSON_HEDLEY_GCC_VERSION_CHECK(4,0,0) || \
1243  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1244  JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
1245  JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1246  JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
1247  JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
1248  (JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__))
1249  #define JSON_HEDLEY_ALWAYS_INLINE __attribute__((__always_inline__)) JSON_HEDLEY_INLINE
1250 #elif JSON_HEDLEY_MSVC_VERSION_CHECK(12,0,0)
1251  #define JSON_HEDLEY_ALWAYS_INLINE __forceinline
1252 #elif JSON_HEDLEY_TI_VERSION_CHECK(7,0,0) && defined(__cplusplus)
1253  #define JSON_HEDLEY_ALWAYS_INLINE _Pragma("FUNC_ALWAYS_INLINE;")
1254 #elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
1255  #define JSON_HEDLEY_ALWAYS_INLINE _Pragma("inline=forced")
1256 #else
1257  #define JSON_HEDLEY_ALWAYS_INLINE JSON_HEDLEY_INLINE
1258 #endif
1259 
1260 #if defined(JSON_HEDLEY_NEVER_INLINE)
1261  #undef JSON_HEDLEY_NEVER_INLINE
1262 #endif
1263 #if \
1264  JSON_HEDLEY_HAS_ATTRIBUTE(noinline) || \
1265  JSON_HEDLEY_GCC_VERSION_CHECK(4,0,0) || \
1266  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1267  JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
1268  JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1269  JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
1270  JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
1271  (JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__))
1272  #define JSON_HEDLEY_NEVER_INLINE __attribute__((__noinline__))
1273 #elif JSON_HEDLEY_MSVC_VERSION_CHECK(13,10,0)
1274  #define JSON_HEDLEY_NEVER_INLINE __declspec(noinline)
1275 #elif JSON_HEDLEY_PGI_VERSION_CHECK(10,2,0)
1276  #define JSON_HEDLEY_NEVER_INLINE _Pragma("noinline")
1277 #elif JSON_HEDLEY_TI_VERSION_CHECK(6,0,0) && defined(__cplusplus)
1278  #define JSON_HEDLEY_NEVER_INLINE _Pragma("FUNC_CANNOT_INLINE;")
1279 #elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
1280  #define JSON_HEDLEY_NEVER_INLINE _Pragma("inline=never")
1281 #elif JSON_HEDLEY_COMPCERT_VERSION_CHECK(3,2,0)
1282  #define JSON_HEDLEY_NEVER_INLINE __attribute((noinline))
1283 #elif JSON_HEDLEY_PELLES_VERSION_CHECK(9,0,0)
1284  #define JSON_HEDLEY_NEVER_INLINE __declspec(noinline)
1285 #else
1286  #define JSON_HEDLEY_NEVER_INLINE
1287 #endif
1288 
1289 #if defined(JSON_HEDLEY_PRIVATE)
1290  #undef JSON_HEDLEY_PRIVATE
1291 #endif
1292 #if defined(JSON_HEDLEY_PUBLIC)
1293  #undef JSON_HEDLEY_PUBLIC
1294 #endif
1295 #if defined(JSON_HEDLEY_IMPORT)
1296  #undef JSON_HEDLEY_IMPORT
1297 #endif
1298 #if defined(_WIN32) || defined(__CYGWIN__)
1299  #define JSON_HEDLEY_PRIVATE
1300  #define JSON_HEDLEY_PUBLIC __declspec(dllexport)
1301  #define JSON_HEDLEY_IMPORT __declspec(dllimport)
1302 #else
1303  #if \
1304  JSON_HEDLEY_HAS_ATTRIBUTE(visibility) || \
1305  JSON_HEDLEY_GCC_VERSION_CHECK(3,3,0) || \
1306  JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
1307  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1308  JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1309  JSON_HEDLEY_IBM_VERSION_CHECK(13,1,0) || \
1310  JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
1311  (JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_EABI__) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__))
1312  #define JSON_HEDLEY_PRIVATE __attribute__((__visibility__("hidden")))
1313  #define JSON_HEDLEY_PUBLIC __attribute__((__visibility__("default")))
1314  #else
1315  #define JSON_HEDLEY_PRIVATE
1316  #define JSON_HEDLEY_PUBLIC
1317  #endif
1318  #define JSON_HEDLEY_IMPORT extern
1319 #endif
1320 
1321 #if defined(JSON_HEDLEY_NO_THROW)
1322  #undef JSON_HEDLEY_NO_THROW
1323 #endif
1324 #if \
1325  JSON_HEDLEY_HAS_ATTRIBUTE(nothrow) || \
1326  JSON_HEDLEY_GCC_VERSION_CHECK(3,3,0) || \
1327  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
1328  #define JSON_HEDLEY_NO_THROW __attribute__((__nothrow__))
1329 #elif \
1330  JSON_HEDLEY_MSVC_VERSION_CHECK(13,1,0) || \
1331  JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0)
1332  #define JSON_HEDLEY_NO_THROW __declspec(nothrow)
1333 #else
1334  #define JSON_HEDLEY_NO_THROW
1335 #endif
1336 
1337 #if defined(JSON_HEDLEY_FALL_THROUGH)
1338  #undef JSON_HEDLEY_FALL_THROUGH
1339 #endif
1340 #if JSON_HEDLEY_GNUC_HAS_ATTRIBUTE(fallthrough,7,0,0) && !defined(JSON_HEDLEY_PGI_VERSION)
1341  #define JSON_HEDLEY_FALL_THROUGH __attribute__((__fallthrough__))
1342 #elif JSON_HEDLEY_HAS_CPP_ATTRIBUTE_NS(clang,fallthrough)
1343  #define JSON_HEDLEY_FALL_THROUGH JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_([[clang::fallthrough]])
1344 #elif JSON_HEDLEY_HAS_CPP_ATTRIBUTE(fallthrough)
1345  #define JSON_HEDLEY_FALL_THROUGH JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_([[fallthrough]])
1346 #elif defined(__fallthrough) /* SAL */
1347  #define JSON_HEDLEY_FALL_THROUGH __fallthrough
1348 #else
1349  #define JSON_HEDLEY_FALL_THROUGH
1350 #endif
1351 
1352 #if defined(JSON_HEDLEY_RETURNS_NON_NULL)
1353  #undef JSON_HEDLEY_RETURNS_NON_NULL
1354 #endif
1355 #if \
1356  JSON_HEDLEY_HAS_ATTRIBUTE(returns_nonnull) || \
1357  JSON_HEDLEY_GCC_VERSION_CHECK(4,9,0)
1358  #define JSON_HEDLEY_RETURNS_NON_NULL __attribute__((__returns_nonnull__))
1359 #elif defined(_Ret_notnull_) /* SAL */
1360  #define JSON_HEDLEY_RETURNS_NON_NULL _Ret_notnull_
1361 #else
1362  #define JSON_HEDLEY_RETURNS_NON_NULL
1363 #endif
1364 
1365 #if defined(JSON_HEDLEY_ARRAY_PARAM)
1366  #undef JSON_HEDLEY_ARRAY_PARAM
1367 #endif
1368 #if \
1369  defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) && \
1370  !defined(__STDC_NO_VLA__) && \
1371  !defined(__cplusplus) && \
1372  !defined(JSON_HEDLEY_PGI_VERSION) && \
1373  !defined(JSON_HEDLEY_TINYC_VERSION)
1374  #define JSON_HEDLEY_ARRAY_PARAM(name) (name)
1375 #else
1376  #define JSON_HEDLEY_ARRAY_PARAM(name)
1377 #endif
1378 
1379 #if defined(JSON_HEDLEY_IS_CONSTANT)
1380  #undef JSON_HEDLEY_IS_CONSTANT
1381 #endif
1382 #if defined(JSON_HEDLEY_REQUIRE_CONSTEXPR)
1383  #undef JSON_HEDLEY_REQUIRE_CONSTEXPR
1384 #endif
1385 /* JSON_HEDLEY_IS_CONSTEXPR_ is for
1386  HEDLEY INTERNAL USE ONLY. API subject to change without notice. */
1387 #if defined(JSON_HEDLEY_IS_CONSTEXPR_)
1388  #undef JSON_HEDLEY_IS_CONSTEXPR_
1389 #endif
1390 #if \
1391  JSON_HEDLEY_HAS_BUILTIN(__builtin_constant_p) || \
1392  JSON_HEDLEY_GCC_VERSION_CHECK(3,4,0) || \
1393  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1394  JSON_HEDLEY_TINYC_VERSION_CHECK(0,9,19) || \
1395  JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1396  JSON_HEDLEY_IBM_VERSION_CHECK(13,1,0) || \
1397  JSON_HEDLEY_TI_VERSION_CHECK(6,1,0) || \
1398  (JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,10,0) && !defined(__cplusplus)) || \
1399  JSON_HEDLEY_CRAY_VERSION_CHECK(8,1,0)
1400  #define JSON_HEDLEY_IS_CONSTANT(expr) __builtin_constant_p(expr)
1401 #endif
1402 #if !defined(__cplusplus)
1403 # if \
1404  JSON_HEDLEY_HAS_BUILTIN(__builtin_types_compatible_p) || \
1405  JSON_HEDLEY_GCC_VERSION_CHECK(3,4,0) || \
1406  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1407  JSON_HEDLEY_IBM_VERSION_CHECK(13,1,0) || \
1408  JSON_HEDLEY_CRAY_VERSION_CHECK(8,1,0) || \
1409  JSON_HEDLEY_ARM_VERSION_CHECK(5,4,0) || \
1410  JSON_HEDLEY_TINYC_VERSION_CHECK(0,9,24)
1411 #if defined(__INTPTR_TYPE__)
1412  #define JSON_HEDLEY_IS_CONSTEXPR_(expr) __builtin_types_compatible_p(__typeof__((1 ? (void*) ((__INTPTR_TYPE__) ((expr) * 0)) : (int*) 0)), int*)
1413 #else
1414  #include <stdint.h>
1415  #define JSON_HEDLEY_IS_CONSTEXPR_(expr) __builtin_types_compatible_p(__typeof__((1 ? (void*) ((intptr_t) ((expr) * 0)) : (int*) 0)), int*)
1416 #endif
1417 # elif \
1418  (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) && !defined(JSON_HEDLEY_SUNPRO_VERSION) && !defined(JSON_HEDLEY_PGI_VERSION)) || \
1419  JSON_HEDLEY_HAS_EXTENSION(c_generic_selections) || \
1420  JSON_HEDLEY_GCC_VERSION_CHECK(4,9,0) || \
1421  JSON_HEDLEY_INTEL_VERSION_CHECK(17,0,0) || \
1422  JSON_HEDLEY_IBM_VERSION_CHECK(12,1,0) || \
1423  JSON_HEDLEY_ARM_VERSION_CHECK(5,3,0)
1424 #if defined(__INTPTR_TYPE__)
1425  #define JSON_HEDLEY_IS_CONSTEXPR_(expr) _Generic((1 ? (void*) ((__INTPTR_TYPE__) ((expr) * 0)) : (int*) 0), int*: 1, void*: 0)
1426 #else
1427  #include <stdint.h>
1428  #define JSON_HEDLEY_IS_CONSTEXPR_(expr) _Generic((1 ? (void*) ((intptr_t) * 0) : (int*) 0), int*: 1, void*: 0)
1429 #endif
1430 # elif \
1431  defined(JSON_HEDLEY_GCC_VERSION) || \
1432  defined(JSON_HEDLEY_INTEL_VERSION) || \
1433  defined(JSON_HEDLEY_TINYC_VERSION) || \
1434  defined(JSON_HEDLEY_TI_VERSION) || \
1435  defined(__clang__)
1436 # define JSON_HEDLEY_IS_CONSTEXPR_(expr) ( \
1437  sizeof(void) != \
1438  sizeof(*( \
1439  1 ? \
1440  ((void*) ((expr) * 0L) ) : \
1441 ((struct { char v[sizeof(void) * 2]; } *) 1) \
1442  ) \
1443  ) \
1444  )
1445 # endif
1446 #endif
1447 #if defined(JSON_HEDLEY_IS_CONSTEXPR_)
1448  #if !defined(JSON_HEDLEY_IS_CONSTANT)
1449  #define JSON_HEDLEY_IS_CONSTANT(expr) JSON_HEDLEY_IS_CONSTEXPR_(expr)
1450  #endif
1451  #define JSON_HEDLEY_REQUIRE_CONSTEXPR(expr) (JSON_HEDLEY_IS_CONSTEXPR_(expr) ? (expr) : (-1))
1452 #else
1453  #if !defined(JSON_HEDLEY_IS_CONSTANT)
1454  #define JSON_HEDLEY_IS_CONSTANT(expr) (0)
1455  #endif
1456  #define JSON_HEDLEY_REQUIRE_CONSTEXPR(expr) (expr)
1457 #endif
1458 
1459 #if defined(JSON_HEDLEY_BEGIN_C_DECLS)
1460  #undef JSON_HEDLEY_BEGIN_C_DECLS
1461 #endif
1462 #if defined(JSON_HEDLEY_END_C_DECLS)
1463  #undef JSON_HEDLEY_END_C_DECLS
1464 #endif
1465 #if defined(JSON_HEDLEY_C_DECL)
1466  #undef JSON_HEDLEY_C_DECL
1467 #endif
1468 #if defined(__cplusplus)
1469  #define JSON_HEDLEY_BEGIN_C_DECLS extern "C" {
1470  #define JSON_HEDLEY_END_C_DECLS }
1471  #define JSON_HEDLEY_C_DECL extern "C"
1472 #else
1473  #define JSON_HEDLEY_BEGIN_C_DECLS
1474  #define JSON_HEDLEY_END_C_DECLS
1475  #define JSON_HEDLEY_C_DECL
1476 #endif
1477 
1478 #if defined(JSON_HEDLEY_STATIC_ASSERT)
1479  #undef JSON_HEDLEY_STATIC_ASSERT
1480 #endif
1481 #if \
1482  !defined(__cplusplus) && ( \
1483  (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) || \
1484  JSON_HEDLEY_HAS_FEATURE(c_static_assert) || \
1485  JSON_HEDLEY_GCC_VERSION_CHECK(6,0,0) || \
1486  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1487  defined(_Static_assert) \
1488  )
1489 # define JSON_HEDLEY_STATIC_ASSERT(expr, message) _Static_assert(expr, message)
1490 #elif \
1491  (defined(__cplusplus) && (__cplusplus >= 201103L)) || \
1492  JSON_HEDLEY_MSVC_VERSION_CHECK(16,0,0) || \
1493  (defined(__cplusplus) && JSON_HEDLEY_TI_VERSION_CHECK(8,3,0))
1494 # define JSON_HEDLEY_STATIC_ASSERT(expr, message) JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_(static_assert(expr, message))
1495 #else
1496 # define JSON_HEDLEY_STATIC_ASSERT(expr, message)
1497 #endif
1498 
1499 #if defined(JSON_HEDLEY_CONST_CAST)
1500  #undef JSON_HEDLEY_CONST_CAST
1501 #endif
1502 #if defined(__cplusplus)
1503 # define JSON_HEDLEY_CONST_CAST(T, expr) (const_cast<T>(expr))
1504 #elif \
1505  JSON_HEDLEY_HAS_WARNING("-Wcast-qual") || \
1506  JSON_HEDLEY_GCC_VERSION_CHECK(4,6,0) || \
1507  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
1508 # define JSON_HEDLEY_CONST_CAST(T, expr) (__extension__ ({ \
1509  JSON_HEDLEY_DIAGNOSTIC_PUSH \
1510  JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL \
1511  ((T) (expr)); \
1512  JSON_HEDLEY_DIAGNOSTIC_POP \
1513  }))
1514 #else
1515 # define JSON_HEDLEY_CONST_CAST(T, expr) ((T) (expr))
1516 #endif
1517 
1518 #if defined(JSON_HEDLEY_REINTERPRET_CAST)
1519  #undef JSON_HEDLEY_REINTERPRET_CAST
1520 #endif
1521 #if defined(__cplusplus)
1522  #define JSON_HEDLEY_REINTERPRET_CAST(T, expr) (reinterpret_cast<T>(expr))
1523 #else
1524  #define JSON_HEDLEY_REINTERPRET_CAST(T, expr) (*((T*) &(expr)))
1525 #endif
1526 
1527 #if defined(JSON_HEDLEY_STATIC_CAST)
1528  #undef JSON_HEDLEY_STATIC_CAST
1529 #endif
1530 #if defined(__cplusplus)
1531  #define JSON_HEDLEY_STATIC_CAST(T, expr) (static_cast<T>(expr))
1532 #else
1533  #define JSON_HEDLEY_STATIC_CAST(T, expr) ((T) (expr))
1534 #endif
1535 
1536 #if defined(JSON_HEDLEY_CPP_CAST)
1537  #undef JSON_HEDLEY_CPP_CAST
1538 #endif
1539 #if defined(__cplusplus)
1540  #define JSON_HEDLEY_CPP_CAST(T, expr) static_cast<T>(expr)
1541 #else
1542  #define JSON_HEDLEY_CPP_CAST(T, expr) (expr)
1543 #endif
1544 
1545 #if defined(JSON_HEDLEY_NULL)
1546  #undef JSON_HEDLEY_NULL
1547 #endif
1548 #if defined(__cplusplus)
1549  #if __cplusplus >= 201103L
1550  #define JSON_HEDLEY_NULL JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_(nullptr)
1551  #elif defined(NULL)
1552  #define JSON_HEDLEY_NULL NULL
1553  #else
1554  #define JSON_HEDLEY_NULL JSON_HEDLEY_STATIC_CAST(void*, 0)
1555  #endif
1556 #elif defined(NULL)
1557  #define JSON_HEDLEY_NULL NULL
1558 #else
1559  #define JSON_HEDLEY_NULL ((void*) 0)
1560 #endif
1561 
1562 #if defined(JSON_HEDLEY_MESSAGE)
1563  #undef JSON_HEDLEY_MESSAGE
1564 #endif
1565 #if JSON_HEDLEY_HAS_WARNING("-Wunknown-pragmas")
1566 # define JSON_HEDLEY_MESSAGE(msg) \
1567  JSON_HEDLEY_DIAGNOSTIC_PUSH \
1568  JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS \
1569  JSON_HEDLEY_PRAGMA(message msg) \
1570  JSON_HEDLEY_DIAGNOSTIC_POP
1571 #elif \
1572  JSON_HEDLEY_GCC_VERSION_CHECK(4,4,0) || \
1573  JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
1574 # define JSON_HEDLEY_MESSAGE(msg) JSON_HEDLEY_PRAGMA(message msg)
1575 #elif JSON_HEDLEY_CRAY_VERSION_CHECK(5,0,0)
1576 # define JSON_HEDLEY_MESSAGE(msg) JSON_HEDLEY_PRAGMA(_CRI message msg)
1577 #elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
1578 # define JSON_HEDLEY_MESSAGE(msg) JSON_HEDLEY_PRAGMA(message(msg))
1579 #elif JSON_HEDLEY_PELLES_VERSION_CHECK(2,0,0)
1580 # define JSON_HEDLEY_MESSAGE(msg) JSON_HEDLEY_PRAGMA(message(msg))
1581 #else
1582 # define JSON_HEDLEY_MESSAGE(msg)
1583 #endif
1584 
1585 #if defined(JSON_HEDLEY_WARNING)
1586  #undef JSON_HEDLEY_WARNING
1587 #endif
1588 #if JSON_HEDLEY_HAS_WARNING("-Wunknown-pragmas")
1589 # define JSON_HEDLEY_WARNING(msg) \
1590  JSON_HEDLEY_DIAGNOSTIC_PUSH \
1591  JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS \
1592  JSON_HEDLEY_PRAGMA(clang warning msg) \
1593  JSON_HEDLEY_DIAGNOSTIC_POP
1594 #elif \
1595  JSON_HEDLEY_GCC_VERSION_CHECK(4,8,0) || \
1596  JSON_HEDLEY_PGI_VERSION_CHECK(18,4,0)
1597 # define JSON_HEDLEY_WARNING(msg) JSON_HEDLEY_PRAGMA(GCC warning msg)
1598 #elif JSON_HEDLEY_MSVC_VERSION_CHECK(15,0,0)
1599 # define JSON_HEDLEY_WARNING(msg) JSON_HEDLEY_PRAGMA(message(msg))
1600 #else
1601 # define JSON_HEDLEY_WARNING(msg) JSON_HEDLEY_MESSAGE(msg)
1602 #endif
1603 
1604 #if defined(JSON_HEDLEY_REQUIRE)
1605  #undef JSON_HEDLEY_REQUIRE
1606 #endif
1607 #if defined(JSON_HEDLEY_REQUIRE_MSG)
1608  #undef JSON_HEDLEY_REQUIRE_MSG
1609 #endif
1610 #if JSON_HEDLEY_HAS_ATTRIBUTE(diagnose_if)
1611 # if JSON_HEDLEY_HAS_WARNING("-Wgcc-compat")
1612 # define JSON_HEDLEY_REQUIRE(expr) \
1613  JSON_HEDLEY_DIAGNOSTIC_PUSH \
1614  _Pragma("clang diagnostic ignored \"-Wgcc-compat\"") \
1615  __attribute__((diagnose_if(!(expr), #expr, "error"))) \
1616  JSON_HEDLEY_DIAGNOSTIC_POP
1617 # define JSON_HEDLEY_REQUIRE_MSG(expr,msg) \
1618  JSON_HEDLEY_DIAGNOSTIC_PUSH \
1619  _Pragma("clang diagnostic ignored \"-Wgcc-compat\"") \
1620  __attribute__((diagnose_if(!(expr), msg, "error"))) \
1621  JSON_HEDLEY_DIAGNOSTIC_POP
1622 # else
1623 # define JSON_HEDLEY_REQUIRE(expr) __attribute__((diagnose_if(!(expr), #expr, "error")))
1624 # define JSON_HEDLEY_REQUIRE_MSG(expr,msg) __attribute__((diagnose_if(!(expr), msg, "error")))
1625 # endif
1626 #else
1627 # define JSON_HEDLEY_REQUIRE(expr)
1628 # define JSON_HEDLEY_REQUIRE_MSG(expr,msg)
1629 #endif
1630 
1631 #if defined(JSON_HEDLEY_FLAGS)
1632  #undef JSON_HEDLEY_FLAGS
1633 #endif
1634 #if JSON_HEDLEY_HAS_ATTRIBUTE(flag_enum)
1635  #define JSON_HEDLEY_FLAGS __attribute__((__flag_enum__))
1636 #endif
1637 
1638 #if defined(JSON_HEDLEY_FLAGS_CAST)
1639  #undef JSON_HEDLEY_FLAGS_CAST
1640 #endif
1641 #if JSON_HEDLEY_INTEL_VERSION_CHECK(19,0,0)
1642 # define JSON_HEDLEY_FLAGS_CAST(T, expr) (__extension__ ({ \
1643  JSON_HEDLEY_DIAGNOSTIC_PUSH \
1644  _Pragma("warning(disable:188)") \
1645  ((T) (expr)); \
1646  JSON_HEDLEY_DIAGNOSTIC_POP \
1647  }))
1648 #else
1649 # define JSON_HEDLEY_FLAGS_CAST(T, expr) JSON_HEDLEY_STATIC_CAST(T, expr)
1650 #endif
1651 
1652 #if defined(JSON_HEDLEY_EMPTY_BASES)
1653  #undef JSON_HEDLEY_EMPTY_BASES
1654 #endif
1655 #if JSON_HEDLEY_MSVC_VERSION_CHECK(19,0,23918) && !JSON_HEDLEY_MSVC_VERSION_CHECK(20,0,0)
1656  #define JSON_HEDLEY_EMPTY_BASES __declspec(empty_bases)
1657 #else
1658  #define JSON_HEDLEY_EMPTY_BASES
1659 #endif
1660 
1661 /* Remaining macros are deprecated. */
1662 
1663 #if defined(JSON_HEDLEY_GCC_NOT_CLANG_VERSION_CHECK)
1664  #undef JSON_HEDLEY_GCC_NOT_CLANG_VERSION_CHECK
1665 #endif
1666 #if defined(__clang__)
1667  #define JSON_HEDLEY_GCC_NOT_CLANG_VERSION_CHECK(major,minor,patch) (0)
1668 #else
1669  #define JSON_HEDLEY_GCC_NOT_CLANG_VERSION_CHECK(major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
1670 #endif
1671 
1672 #if defined(JSON_HEDLEY_CLANG_HAS_ATTRIBUTE)
1673  #undef JSON_HEDLEY_CLANG_HAS_ATTRIBUTE
1674 #endif
1675 #define JSON_HEDLEY_CLANG_HAS_ATTRIBUTE(attribute) JSON_HEDLEY_HAS_ATTRIBUTE(attribute)
1676 
1677 #if defined(JSON_HEDLEY_CLANG_HAS_CPP_ATTRIBUTE)
1678  #undef JSON_HEDLEY_CLANG_HAS_CPP_ATTRIBUTE
1679 #endif
1680 #define JSON_HEDLEY_CLANG_HAS_CPP_ATTRIBUTE(attribute) JSON_HEDLEY_HAS_CPP_ATTRIBUTE(attribute)
1681 
1682 #if defined(JSON_HEDLEY_CLANG_HAS_BUILTIN)
1683  #undef JSON_HEDLEY_CLANG_HAS_BUILTIN
1684 #endif
1685 #define JSON_HEDLEY_CLANG_HAS_BUILTIN(builtin) JSON_HEDLEY_HAS_BUILTIN(builtin)
1686 
1687 #if defined(JSON_HEDLEY_CLANG_HAS_FEATURE)
1688  #undef JSON_HEDLEY_CLANG_HAS_FEATURE
1689 #endif
1690 #define JSON_HEDLEY_CLANG_HAS_FEATURE(feature) JSON_HEDLEY_HAS_FEATURE(feature)
1691 
1692 #if defined(JSON_HEDLEY_CLANG_HAS_EXTENSION)
1693  #undef JSON_HEDLEY_CLANG_HAS_EXTENSION
1694 #endif
1695 #define JSON_HEDLEY_CLANG_HAS_EXTENSION(extension) JSON_HEDLEY_HAS_EXTENSION(extension)
1696 
1697 #if defined(JSON_HEDLEY_CLANG_HAS_DECLSPEC_DECLSPEC_ATTRIBUTE)
1698  #undef JSON_HEDLEY_CLANG_HAS_DECLSPEC_DECLSPEC_ATTRIBUTE
1699 #endif
1700 #define JSON_HEDLEY_CLANG_HAS_DECLSPEC_ATTRIBUTE(attribute) JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE(attribute)
1701 
1702 #if defined(JSON_HEDLEY_CLANG_HAS_WARNING)
1703  #undef JSON_HEDLEY_CLANG_HAS_WARNING
1704 #endif
1705 #define JSON_HEDLEY_CLANG_HAS_WARNING(warning) JSON_HEDLEY_HAS_WARNING(warning)
1706 
1707 #endif /* !defined(JSON_HEDLEY_VERSION) || (JSON_HEDLEY_VERSION < X) */
1708 
1709 
1710 // This file contains all internal macro definitions
1711 // You MUST include macro_unscope.hpp at the end of json.hpp to undef all of them
1712 
1713 // exclude unsupported compilers
1714 #if !defined(JSON_SKIP_UNSUPPORTED_COMPILER_CHECK)
1715  #if defined(__clang__)
1716  #if (__clang_major__ * 10000 + __clang_minor__ * 100 + __clang_patchlevel__) < 30400
1717  #error "unsupported Clang version - see https://github.com/nlohmann/json#supported-compilers"
1718  #endif
1719  #elif defined(__GNUC__) && !(defined(__ICC) || defined(__INTEL_COMPILER))
1720  #if (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) < 40800
1721  #error "unsupported GCC version - see https://github.com/nlohmann/json#supported-compilers"
1722  #endif
1723  #endif
1724 #endif
1725 
1726 // C++ language standard detection
1727 #if (defined(__cplusplus) && __cplusplus >= 201703L) || (defined(_HAS_CXX17) && _HAS_CXX17 == 1) // fix for issue #464
1728  #define JSON_HAS_CPP_17
1729  #define JSON_HAS_CPP_14
1730 #elif (defined(__cplusplus) && __cplusplus >= 201402L) || (defined(_HAS_CXX14) && _HAS_CXX14 == 1)
1731  #define JSON_HAS_CPP_14
1732 #endif
1733 
1734 // disable float-equal warnings on GCC/clang
1735 #if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
1736  #pragma GCC diagnostic push
1737  #pragma GCC diagnostic ignored "-Wfloat-equal"
1738 #endif
1739 
1740 // disable documentation warnings on clang
1741 #if defined(__clang__)
1742  #pragma GCC diagnostic push
1743  #pragma GCC diagnostic ignored "-Wdocumentation"
1744 #endif
1745 
1746 // allow to disable exceptions
1747 #if (defined(__cpp_exceptions) || defined(__EXCEPTIONS) || defined(_CPPUNWIND)) && !defined(JSON_NOEXCEPTION)
1748  #define JSON_THROW(exception) throw exception
1749  #define JSON_TRY try
1750  #define JSON_CATCH(exception) catch(exception)
1751  #define JSON_INTERNAL_CATCH(exception) catch(exception)
1752 #else
1753  #include <cstdlib>
1754  #define JSON_THROW(exception) std::abort()
1755  #define JSON_TRY if(true)
1756  #define JSON_CATCH(exception) if(false)
1757  #define JSON_INTERNAL_CATCH(exception) if(false)
1758 #endif
1759 
1760 // override exception macros
1761 #if defined(JSON_THROW_USER)
1762  #undef JSON_THROW
1763  #define JSON_THROW JSON_THROW_USER
1764 #endif
1765 #if defined(JSON_TRY_USER)
1766  #undef JSON_TRY
1767  #define JSON_TRY JSON_TRY_USER
1768 #endif
1769 #if defined(JSON_CATCH_USER)
1770  #undef JSON_CATCH
1771  #define JSON_CATCH JSON_CATCH_USER
1772  #undef JSON_INTERNAL_CATCH
1773  #define JSON_INTERNAL_CATCH JSON_CATCH_USER
1774 #endif
1775 #if defined(JSON_INTERNAL_CATCH_USER)
1776  #undef JSON_INTERNAL_CATCH
1777  #define JSON_INTERNAL_CATCH JSON_INTERNAL_CATCH_USER
1778 #endif
1779 
1780 /*!
1781 @brief macro to briefly define a mapping between an enum and JSON
1782 @def NLOHMANN_JSON_SERIALIZE_ENUM
1783 @since version 3.4.0
1784 */
1785 #define NLOHMANN_JSON_SERIALIZE_ENUM(ENUM_TYPE, ...) \
1786  template<typename BasicJsonType> \
1787  inline void to_json(BasicJsonType& j, const ENUM_TYPE& e) \
1788  { \
1789  static_assert(std::is_enum<ENUM_TYPE>::value, #ENUM_TYPE " must be an enum!"); \
1790  static const std::pair<ENUM_TYPE, BasicJsonType> m[] = __VA_ARGS__; \
1791  auto it = std::find_if(std::begin(m), std::end(m), \
1792  [e](const std::pair<ENUM_TYPE, BasicJsonType>& ej_pair) -> bool \
1793  { \
1794  return ej_pair.first == e; \
1795  }); \
1796  j = ((it != std::end(m)) ? it : std::begin(m))->second; \
1797  } \
1798  template<typename BasicJsonType> \
1799  inline void from_json(const BasicJsonType& j, ENUM_TYPE& e) \
1800  { \
1801  static_assert(std::is_enum<ENUM_TYPE>::value, #ENUM_TYPE " must be an enum!"); \
1802  static const std::pair<ENUM_TYPE, BasicJsonType> m[] = __VA_ARGS__; \
1803  auto it = std::find_if(std::begin(m), std::end(m), \
1804  [&j](const std::pair<ENUM_TYPE, BasicJsonType>& ej_pair) -> bool \
1805  { \
1806  return ej_pair.second == j; \
1807  }); \
1808  e = ((it != std::end(m)) ? it : std::begin(m))->first; \
1809  }
1810 
1811 // Ugly macros to avoid uglier copy-paste when specializing basic_json. They
1812 // may be removed in the future once the class is split.
1813 
1814 #define NLOHMANN_BASIC_JSON_TPL_DECLARATION \
1815  template<template<typename, typename, typename...> class ObjectType, \
1816  template<typename, typename...> class ArrayType, \
1817  class StringType, class BooleanType, class NumberIntegerType, \
1818  class NumberUnsignedType, class NumberFloatType, \
1819  template<typename> class AllocatorType, \
1820  template<typename, typename = void> class JSONSerializer>
1821 
1822 #define NLOHMANN_BASIC_JSON_TPL \
1823  basic_json<ObjectType, ArrayType, StringType, BooleanType, \
1824  NumberIntegerType, NumberUnsignedType, NumberFloatType, \
1825  AllocatorType, JSONSerializer>
1826 
1827 
1828 namespace nlohmann
1829 {
1830 namespace detail
1831 {
1832 ////////////////
1833 // exceptions //
1834 ////////////////
1835 
1836 /*!
1837 @brief general exception of the @ref basic_json class
1838 
1839 This class is an extension of `std::exception` objects with a member @a id for
1840 exception ids. It is used as the base class for all exceptions thrown by the
1841 @ref basic_json class. This class can hence be used as "wildcard" to catch
1842 exceptions.
1843 
1844 Subclasses:
1845 - @ref parse_error for exceptions indicating a parse error
1846 - @ref invalid_iterator for exceptions indicating errors with iterators
1847 - @ref type_error for exceptions indicating executing a member function with
1848  a wrong type
1849 - @ref out_of_range for exceptions indicating access out of the defined range
1850 - @ref other_error for exceptions indicating other library errors
1851 
1852 @internal
1853 @note To have nothrow-copy-constructible exceptions, we internally use
1854  `std::runtime_error` which can cope with arbitrary-length error messages.
1855  Intermediate strings are built with static functions and then passed to
1856  the actual constructor.
1857 @endinternal
1858 
1859 @liveexample{The following code shows how arbitrary library exceptions can be
1860 caught.,exception}
1861 
1862 @since version 3.0.0
1863 */
1864 class exception : public std::exception
1865 {
1866  public:
1867  /// returns the explanatory string
1869  const char* what() const noexcept override
1870  {
1871  return m.what();
1872  }
1873 
1874  /// the id of the exception
1875  const int id;
1876 
1877  protected:
1879  exception(int id_, const char* what_arg) : id(id_), m(what_arg) {}
1880 
1881  static std::string name(const std::string& ename, int id_)
1882  {
1883  return "[json.exception." + ename + "." + std::to_string(id_) + "] ";
1884  }
1885 
1886  private:
1887  /// an exception object as storage for error messages
1888  std::runtime_error m;
1889 };
1890 
1891 /*!
1892 @brief exception indicating a parse error
1893 
1894 This exception is thrown by the library when a parse error occurs. Parse errors
1895 can occur during the deserialization of JSON text, CBOR, MessagePack, as well
1896 as when using JSON Patch.
1897 
1898 Member @a byte holds the byte index of the last read character in the input
1899 file.
1900 
1901 Exceptions have ids 1xx.
1902 
1903 name / id | example message | description
1904 ------------------------------ | --------------- | -------------------------
1905 json.exception.parse_error.101 | parse error at 2: unexpected end of input; expected string literal | This error indicates a syntax error while deserializing a JSON text. The error message describes that an unexpected token (character) was encountered, and the member @a byte indicates the error position.
1906 json.exception.parse_error.102 | parse error at 14: missing or wrong low surrogate | JSON uses the `\uxxxx` format to describe Unicode characters. Code points above above 0xFFFF are split into two `\uxxxx` entries ("surrogate pairs"). This error indicates that the surrogate pair is incomplete or contains an invalid code point.
1907 json.exception.parse_error.103 | parse error: code points above 0x10FFFF are invalid | Unicode supports code points up to 0x10FFFF. Code points above 0x10FFFF are invalid.
1908 json.exception.parse_error.104 | parse error: JSON patch must be an array of objects | [RFC 6902](https://tools.ietf.org/html/rfc6902) requires a JSON Patch document to be a JSON document that represents an array of objects.
1909 json.exception.parse_error.105 | parse error: operation must have string member 'op' | An operation of a JSON Patch document must contain exactly one "op" member, whose value indicates the operation to perform. Its value must be one of "add", "remove", "replace", "move", "copy", or "test"; other values are errors.
1910 json.exception.parse_error.106 | parse error: array index '01' must not begin with '0' | An array index in a JSON Pointer ([RFC 6901](https://tools.ietf.org/html/rfc6901)) may be `0` or any number without a leading `0`.
1911 json.exception.parse_error.107 | parse error: JSON pointer must be empty or begin with '/' - was: 'foo' | A JSON Pointer must be a Unicode string containing a sequence of zero or more reference tokens, each prefixed by a `/` character.
1912 json.exception.parse_error.108 | parse error: escape character '~' must be followed with '0' or '1' | In a JSON Pointer, only `~0` and `~1` are valid escape sequences.
1913 json.exception.parse_error.109 | parse error: array index 'one' is not a number | A JSON Pointer array index must be a number.
1914 json.exception.parse_error.110 | parse error at 1: cannot read 2 bytes from vector | When parsing CBOR or MessagePack, the byte vector ends before the complete value has been read.
1915 json.exception.parse_error.112 | parse error at 1: error reading CBOR; last byte: 0xF8 | Not all types of CBOR or MessagePack are supported. This exception occurs if an unsupported byte was read.
1916 json.exception.parse_error.113 | parse error at 2: expected a CBOR string; last byte: 0x98 | While parsing a map key, a value that is not a string has been read.
1917 json.exception.parse_error.114 | parse error: Unsupported BSON record type 0x0F | The parsing of the corresponding BSON record type is not implemented (yet).
1918 
1919 @note For an input with n bytes, 1 is the index of the first character and n+1
1920  is the index of the terminating null byte or the end of file. This also
1921  holds true when reading a byte vector (CBOR or MessagePack).
1922 
1923 @liveexample{The following code shows how a `parse_error` exception can be
1924 caught.,parse_error}
1925 
1926 @sa - @ref exception for the base class of the library exceptions
1927 @sa - @ref invalid_iterator for exceptions indicating errors with iterators
1928 @sa - @ref type_error for exceptions indicating executing a member function with
1929  a wrong type
1930 @sa - @ref out_of_range for exceptions indicating access out of the defined range
1931 @sa - @ref other_error for exceptions indicating other library errors
1932 
1933 @since version 3.0.0
1934 */
1935 class parse_error : public exception
1936 {
1937  public:
1938  /*!
1939  @brief create a parse error exception
1940  @param[in] id_ the id of the exception
1941  @param[in] pos the position where the error occurred (or with
1942  chars_read_total=0 if the position cannot be
1943  determined)
1944  @param[in] what_arg the explanatory string
1945  @return parse_error object
1946  */
1947  static parse_error create(int id_, const position_t& pos, const std::string& what_arg)
1948  {
1949  std::string w = exception::name("parse_error", id_) + "parse error" +
1950  position_string(pos) + ": " + what_arg;
1951  return parse_error(id_, pos.chars_read_total, w.c_str());
1952  }
1953 
1954  static parse_error create(int id_, std::size_t byte_, const std::string& what_arg)
1955  {
1956  std::string w = exception::name("parse_error", id_) + "parse error" +
1957  (byte_ != 0 ? (" at byte " + std::to_string(byte_)) : "") +
1958  ": " + what_arg;
1959  return parse_error(id_, byte_, w.c_str());
1960  }
1961 
1962  /*!
1963  @brief byte index of the parse error
1964 
1965  The byte index of the last read character in the input file.
1966 
1967  @note For an input with n bytes, 1 is the index of the first character and
1968  n+1 is the index of the terminating null byte or the end of file.
1969  This also holds true when reading a byte vector (CBOR or MessagePack).
1970  */
1971  const std::size_t byte;
1972 
1973  private:
1974  parse_error(int id_, std::size_t byte_, const char* what_arg)
1975  : exception(id_, what_arg), byte(byte_) {}
1976 
1978  {
1979  return " at line " + std::to_string(pos.lines_read + 1) +
1980  ", column " + std::to_string(pos.chars_read_current_line);
1981  }
1982 };
1983 
1984 /*!
1985 @brief exception indicating errors with iterators
1986 
1987 This exception is thrown if iterators passed to a library function do not match
1988 the expected semantics.
1989 
1990 Exceptions have ids 2xx.
1991 
1992 name / id | example message | description
1993 ----------------------------------- | --------------- | -------------------------
1994 json.exception.invalid_iterator.201 | iterators are not compatible | The iterators passed to constructor @ref basic_json(InputIT first, InputIT last) are not compatible, meaning they do not belong to the same container. Therefore, the range (@a first, @a last) is invalid.
1995 json.exception.invalid_iterator.202 | iterator does not fit current value | In an erase or insert function, the passed iterator @a pos does not belong to the JSON value for which the function was called. It hence does not define a valid position for the deletion/insertion.
1996 json.exception.invalid_iterator.203 | iterators do not fit current value | Either iterator passed to function @ref erase(IteratorType first, IteratorType last) does not belong to the JSON value from which values shall be erased. It hence does not define a valid range to delete values from.
1997 json.exception.invalid_iterator.204 | iterators out of range | When an iterator range for a primitive type (number, boolean, or string) is passed to a constructor or an erase function, this range has to be exactly (@ref begin(), @ref end()), because this is the only way the single stored value is expressed. All other ranges are invalid.
1998 json.exception.invalid_iterator.205 | iterator out of range | When an iterator for a primitive type (number, boolean, or string) is passed to an erase function, the iterator has to be the @ref begin() iterator, because it is the only way to address the stored value. All other iterators are invalid.
1999 json.exception.invalid_iterator.206 | cannot construct with iterators from null | The iterators passed to constructor @ref basic_json(InputIT first, InputIT last) belong to a JSON null value and hence to not define a valid range.
2000 json.exception.invalid_iterator.207 | cannot use key() for non-object iterators | The key() member function can only be used on iterators belonging to a JSON object, because other types do not have a concept of a key.
2001 json.exception.invalid_iterator.208 | cannot use operator[] for object iterators | The operator[] to specify a concrete offset cannot be used on iterators belonging to a JSON object, because JSON objects are unordered.
2002 json.exception.invalid_iterator.209 | cannot use offsets with object iterators | The offset operators (+, -, +=, -=) cannot be used on iterators belonging to a JSON object, because JSON objects are unordered.
2003 json.exception.invalid_iterator.210 | iterators do not fit | The iterator range passed to the insert function are not compatible, meaning they do not belong to the same container. Therefore, the range (@a first, @a last) is invalid.
2004 json.exception.invalid_iterator.211 | passed iterators may not belong to container | The iterator range passed to the insert function must not be a subrange of the container to insert to.
2005 json.exception.invalid_iterator.212 | cannot compare iterators of different containers | When two iterators are compared, they must belong to the same container.
2006 json.exception.invalid_iterator.213 | cannot compare order of object iterators | The order of object iterators cannot be compared, because JSON objects are unordered.
2007 json.exception.invalid_iterator.214 | cannot get value | Cannot get value for iterator: Either the iterator belongs to a null value or it is an iterator to a primitive type (number, boolean, or string), but the iterator is different to @ref begin().
2008 
2009 @liveexample{The following code shows how an `invalid_iterator` exception can be
2010 caught.,invalid_iterator}
2011 
2012 @sa - @ref exception for the base class of the library exceptions
2013 @sa - @ref parse_error for exceptions indicating a parse error
2014 @sa - @ref type_error for exceptions indicating executing a member function with
2015  a wrong type
2016 @sa - @ref out_of_range for exceptions indicating access out of the defined range
2017 @sa - @ref other_error for exceptions indicating other library errors
2018 
2019 @since version 3.0.0
2020 */
2022 {
2023  public:
2024  static invalid_iterator create(int id_, const std::string& what_arg)
2025  {
2026  std::string w = exception::name("invalid_iterator", id_) + what_arg;
2027  return invalid_iterator(id_, w.c_str());
2028  }
2029 
2030  private:
2032  invalid_iterator(int id_, const char* what_arg)
2033  : exception(id_, what_arg) {}
2034 };
2035 
2036 /*!
2037 @brief exception indicating executing a member function with a wrong type
2038 
2039 This exception is thrown in case of a type error; that is, a library function is
2040 executed on a JSON value whose type does not match the expected semantics.
2041 
2042 Exceptions have ids 3xx.
2043 
2044 name / id | example message | description
2045 ----------------------------- | --------------- | -------------------------
2046 json.exception.type_error.301 | cannot create object from initializer list | To create an object from an initializer list, the initializer list must consist only of a list of pairs whose first element is a string. When this constraint is violated, an array is created instead.
2047 json.exception.type_error.302 | type must be object, but is array | During implicit or explicit value conversion, the JSON type must be compatible to the target type. For instance, a JSON string can only be converted into string types, but not into numbers or boolean types.
2048 json.exception.type_error.303 | incompatible ReferenceType for get_ref, actual type is object | To retrieve a reference to a value stored in a @ref basic_json object with @ref get_ref, the type of the reference must match the value type. For instance, for a JSON array, the @a ReferenceType must be @ref array_t &.
2049 json.exception.type_error.304 | cannot use at() with string | The @ref at() member functions can only be executed for certain JSON types.
2050 json.exception.type_error.305 | cannot use operator[] with string | The @ref operator[] member functions can only be executed for certain JSON types.
2051 json.exception.type_error.306 | cannot use value() with string | The @ref value() member functions can only be executed for certain JSON types.
2052 json.exception.type_error.307 | cannot use erase() with string | The @ref erase() member functions can only be executed for certain JSON types.
2053 json.exception.type_error.308 | cannot use push_back() with string | The @ref push_back() and @ref operator+= member functions can only be executed for certain JSON types.
2054 json.exception.type_error.309 | cannot use insert() with | The @ref insert() member functions can only be executed for certain JSON types.
2055 json.exception.type_error.310 | cannot use swap() with number | The @ref swap() member functions can only be executed for certain JSON types.
2056 json.exception.type_error.311 | cannot use emplace_back() with string | The @ref emplace_back() member function can only be executed for certain JSON types.
2057 json.exception.type_error.312 | cannot use update() with string | The @ref update() member functions can only be executed for certain JSON types.
2058 json.exception.type_error.313 | invalid value to unflatten | The @ref unflatten function converts an object whose keys are JSON Pointers back into an arbitrary nested JSON value. The JSON Pointers must not overlap, because then the resulting value would not be well defined.
2059 json.exception.type_error.314 | only objects can be unflattened | The @ref unflatten function only works for an object whose keys are JSON Pointers.
2060 json.exception.type_error.315 | values in object must be primitive | The @ref unflatten function only works for an object whose keys are JSON Pointers and whose values are primitive.
2061 json.exception.type_error.316 | invalid UTF-8 byte at index 10: 0x7E | The @ref dump function only works with UTF-8 encoded strings; that is, if you assign a `std::string` to a JSON value, make sure it is UTF-8 encoded. |
2062 json.exception.type_error.317 | JSON value cannot be serialized to requested format | The dynamic type of the object cannot be represented in the requested serialization format (e.g. a raw `true` or `null` JSON object cannot be serialized to BSON) |
2063 
2064 @liveexample{The following code shows how a `type_error` exception can be
2065 caught.,type_error}
2066 
2067 @sa - @ref exception for the base class of the library exceptions
2068 @sa - @ref parse_error for exceptions indicating a parse error
2069 @sa - @ref invalid_iterator for exceptions indicating errors with iterators
2070 @sa - @ref out_of_range for exceptions indicating access out of the defined range
2071 @sa - @ref other_error for exceptions indicating other library errors
2072 
2073 @since version 3.0.0
2074 */
2075 class type_error : public exception
2076 {
2077  public:
2078  static type_error create(int id_, const std::string& what_arg)
2079  {
2080  std::string w = exception::name("type_error", id_) + what_arg;
2081  return type_error(id_, w.c_str());
2082  }
2083 
2084  private:
2086  type_error(int id_, const char* what_arg) : exception(id_, what_arg) {}
2087 };
2088 
2089 /*!
2090 @brief exception indicating access out of the defined range
2091 
2092 This exception is thrown in case a library function is called on an input
2093 parameter that exceeds the expected range, for instance in case of array
2094 indices or nonexisting object keys.
2095 
2096 Exceptions have ids 4xx.
2097 
2098 name / id | example message | description
2099 ------------------------------- | --------------- | -------------------------
2100 json.exception.out_of_range.401 | array index 3 is out of range | The provided array index @a i is larger than @a size-1.
2101 json.exception.out_of_range.402 | array index '-' (3) is out of range | The special array index `-` in a JSON Pointer never describes a valid element of the array, but the index past the end. That is, it can only be used to add elements at this position, but not to read it.
2102 json.exception.out_of_range.403 | key 'foo' not found | The provided key was not found in the JSON object.
2103 json.exception.out_of_range.404 | unresolved reference token 'foo' | A reference token in a JSON Pointer could not be resolved.
2104 json.exception.out_of_range.405 | JSON pointer has no parent | The JSON Patch operations 'remove' and 'add' can not be applied to the root element of the JSON value.
2105 json.exception.out_of_range.406 | number overflow parsing '10E1000' | A parsed number could not be stored as without changing it to NaN or INF.
2106 json.exception.out_of_range.407 | number overflow serializing '9223372036854775808' | UBJSON and BSON only support integer numbers up to 9223372036854775807. |
2107 json.exception.out_of_range.408 | excessive array size: 8658170730974374167 | The size (following `#`) of an UBJSON array or object exceeds the maximal capacity. |
2108 json.exception.out_of_range.409 | BSON key cannot contain code point U+0000 (at byte 2) | Key identifiers to be serialized to BSON cannot contain code point U+0000, since the key is stored as zero-terminated c-string |
2109 
2110 @liveexample{The following code shows how an `out_of_range` exception can be
2111 caught.,out_of_range}
2112 
2113 @sa - @ref exception for the base class of the library exceptions
2114 @sa - @ref parse_error for exceptions indicating a parse error
2115 @sa - @ref invalid_iterator for exceptions indicating errors with iterators
2116 @sa - @ref type_error for exceptions indicating executing a member function with
2117  a wrong type
2118 @sa - @ref other_error for exceptions indicating other library errors
2119 
2120 @since version 3.0.0
2121 */
2122 class out_of_range : public exception
2123 {
2124  public:
2125  static out_of_range create(int id_, const std::string& what_arg)
2126  {
2127  std::string w = exception::name("out_of_range", id_) + what_arg;
2128  return out_of_range(id_, w.c_str());
2129  }
2130 
2131  private:
2133  out_of_range(int id_, const char* what_arg) : exception(id_, what_arg) {}
2134 };
2135 
2136 /*!
2137 @brief exception indicating other library errors
2138 
2139 This exception is thrown in case of errors that cannot be classified with the
2140 other exception types.
2141 
2142 Exceptions have ids 5xx.
2143 
2144 name / id | example message | description
2145 ------------------------------ | --------------- | -------------------------
2146 json.exception.other_error.501 | unsuccessful: {"op":"test","path":"/baz", "value":"bar"} | A JSON Patch operation 'test' failed. The unsuccessful operation is also printed.
2147 
2148 @sa - @ref exception for the base class of the library exceptions
2149 @sa - @ref parse_error for exceptions indicating a parse error
2150 @sa - @ref invalid_iterator for exceptions indicating errors with iterators
2151 @sa - @ref type_error for exceptions indicating executing a member function with
2152  a wrong type
2153 @sa - @ref out_of_range for exceptions indicating access out of the defined range
2154 
2155 @liveexample{The following code shows how an `other_error` exception can be
2156 caught.,other_error}
2157 
2158 @since version 3.0.0
2159 */
2160 class other_error : public exception
2161 {
2162  public:
2163  static other_error create(int id_, const std::string& what_arg)
2164  {
2165  std::string w = exception::name("other_error", id_) + what_arg;
2166  return other_error(id_, w.c_str());
2167  }
2168 
2169  private:
2171  other_error(int id_, const char* what_arg) : exception(id_, what_arg) {}
2172 };
2173 } // namespace detail
2174 } // namespace nlohmann
2175 
2176 // #include <nlohmann/detail/macro_scope.hpp>
2177 
2178 // #include <nlohmann/detail/meta/cpp_future.hpp>
2179 
2180 
2181 #include <ciso646> // not
2182 #include <cstddef> // size_t
2183 #include <type_traits> // conditional, enable_if, false_type, integral_constant, is_constructible, is_integral, is_same, remove_cv, remove_reference, true_type
2184 
2185 namespace nlohmann
2186 {
2187 namespace detail
2188 {
2189 // alias templates to reduce boilerplate
2190 template<bool B, typename T = void>
2192 
2193 template<typename T>
2195 
2196 // implementation of C++14 index_sequence and affiliates
2197 // source: https://stackoverflow.com/a/32223343
2198 template<std::size_t... Ints>
2200 {
2202  using value_type = std::size_t;
2203  static constexpr std::size_t size() noexcept
2204  {
2205  return sizeof...(Ints);
2206  }
2207 };
2208 
2209 template<class Sequence1, class Sequence2>
2211 
2212 template<std::size_t... I1, std::size_t... I2>
2214  : index_sequence < I1..., (sizeof...(I1) + I2)... > {};
2215 
2216 template<std::size_t N>
2218  : merge_and_renumber < typename make_index_sequence < N / 2 >::type,
2219  typename make_index_sequence < N - N / 2 >::type > {};
2220 
2221 template<> struct make_index_sequence<0> : index_sequence<> {};
2222 template<> struct make_index_sequence<1> : index_sequence<0> {};
2223 
2224 template<typename... Ts>
2226 
2227 // dispatch utility (taken from ranges-v3)
2228 template<unsigned N> struct priority_tag : priority_tag < N - 1 > {};
2229 template<> struct priority_tag<0> {};
2230 
2231 // taken from ranges-v3
2232 template<typename T>
2234 {
2235  static constexpr T value{};
2236 };
2237 
2238 template<typename T>
2239 constexpr T static_const<T>::value;
2240 } // namespace detail
2241 } // namespace nlohmann
2242 
2243 // #include <nlohmann/detail/meta/type_traits.hpp>
2244 
2245 
2246 #include <ciso646> // not
2247 #include <limits> // numeric_limits
2248 #include <type_traits> // false_type, is_constructible, is_integral, is_same, true_type
2249 #include <utility> // declval
2250 
2251 // #include <nlohmann/detail/iterators/iterator_traits.hpp>
2252 
2253 
2254 #include <iterator> // random_access_iterator_tag
2255 
2256 // #include <nlohmann/detail/meta/void_t.hpp>
2257 
2258 
2259 namespace nlohmann
2260 {
2261 namespace detail
2262 {
2263 template <typename ...Ts> struct make_void
2264 {
2265  using type = void;
2266 };
2267 template <typename ...Ts> using void_t = typename make_void<Ts...>::type;
2268 } // namespace detail
2269 } // namespace nlohmann
2270 
2271 // #include <nlohmann/detail/meta/cpp_future.hpp>
2272 
2273 
2274 namespace nlohmann
2275 {
2276 namespace detail
2277 {
2278 template <typename It, typename = void>
2279 struct iterator_types {};
2280 
2281 template <typename It>
2283  It,
2284  void_t<typename It::difference_type, typename It::value_type, typename It::pointer,
2285  typename It::reference, typename It::iterator_category >>
2286 {
2287  using difference_type = typename It::difference_type;
2288  using value_type = typename It::value_type;
2289  using pointer = typename It::pointer;
2290  using reference = typename It::reference;
2291  using iterator_category = typename It::iterator_category;
2292 };
2293 
2294 // This is required as some compilers implement std::iterator_traits in a way that
2295 // doesn't work with SFINAE. See https://github.com/nlohmann/json/issues/1341.
2296 template <typename T, typename = void>
2298 {
2299 };
2300 
2301 template <typename T>
2302 struct iterator_traits < T, enable_if_t < !std::is_pointer<T>::value >>
2303  : iterator_types<T>
2304 {
2305 };
2306 
2307 template <typename T>
2309 {
2310  using iterator_category = std::random_access_iterator_tag;
2311  using value_type = T;
2312  using difference_type = ptrdiff_t;
2313  using pointer = T*;
2314  using reference = T&;
2315 };
2316 } // namespace detail
2317 } // namespace nlohmann
2318 
2319 // #include <nlohmann/detail/macro_scope.hpp>
2320 
2321 // #include <nlohmann/detail/meta/cpp_future.hpp>
2322 
2323 // #include <nlohmann/detail/meta/detected.hpp>
2324 
2325 
2326 #include <type_traits>
2327 
2328 // #include <nlohmann/detail/meta/void_t.hpp>
2329 
2330 
2331 // http://en.cppreference.com/w/cpp/experimental/is_detected
2332 namespace nlohmann
2333 {
2334 namespace detail
2335 {
2336 struct nonesuch
2337 {
2338  nonesuch() = delete;
2339  ~nonesuch() = delete;
2340  nonesuch(nonesuch const&) = delete;
2341  nonesuch(nonesuch const&&) = delete;
2342  void operator=(nonesuch const&) = delete;
2343  void operator=(nonesuch&&) = delete;
2344 };
2345 
2346 template <class Default,
2347  class AlwaysVoid,
2348  template <class...> class Op,
2349  class... Args>
2350 struct detector
2351 {
2352  using value_t = std::false_type;
2353  using type = Default;
2354 };
2355 
2356 template <class Default, template <class...> class Op, class... Args>
2357 struct detector<Default, void_t<Op<Args...>>, Op, Args...>
2358 {
2359  using value_t = std::true_type;
2360  using type = Op<Args...>;
2361 };
2362 
2363 template <template <class...> class Op, class... Args>
2364 using is_detected = typename detector<nonesuch, void, Op, Args...>::value_t;
2365 
2366 template <template <class...> class Op, class... Args>
2367 using detected_t = typename detector<nonesuch, void, Op, Args...>::type;
2368 
2369 template <class Default, template <class...> class Op, class... Args>
2370 using detected_or = detector<Default, void, Op, Args...>;
2371 
2372 template <class Default, template <class...> class Op, class... Args>
2373 using detected_or_t = typename detected_or<Default, Op, Args...>::type;
2374 
2375 template <class Expected, template <class...> class Op, class... Args>
2376 using is_detected_exact = std::is_same<Expected, detected_t<Op, Args...>>;
2377 
2378 template <class To, template <class...> class Op, class... Args>
2380  std::is_convertible<detected_t<Op, Args...>, To>;
2381 } // namespace detail
2382 } // namespace nlohmann
2383 
2384 // #include <nlohmann/json_fwd.hpp>
2385 #ifndef INCLUDE_NLOHMANN_JSON_FWD_HPP_
2386 #define INCLUDE_NLOHMANN_JSON_FWD_HPP_
2387 
2388 #include <cstdint> // int64_t, uint64_t
2389 #include <map> // map
2390 #include <memory> // allocator
2391 #include <string> // string
2392 #include <vector> // vector
2393 
2394 /*!
2395 @brief namespace for Niels Lohmann
2396 @see https://github.com/nlohmann
2397 @since version 1.0.0
2398 */
2399 namespace nlohmann
2400 {
2401 /*!
2402 @brief default JSONSerializer template argument
2403 
2404 This serializer ignores the template arguments and uses ADL
2405 ([argument-dependent lookup](https://en.cppreference.com/w/cpp/language/adl))
2406 for serialization.
2407 */
2408 template<typename T = void, typename SFINAE = void>
2410 
2411 template<template<typename U, typename V, typename... Args> class ObjectType =
2412  std::map,
2413  template<typename U, typename... Args> class ArrayType = std::vector,
2414  class StringType = std::string, class BooleanType = bool,
2415  class NumberIntegerType = std::int64_t,
2416  class NumberUnsignedType = std::uint64_t,
2417  class NumberFloatType = double,
2418  template<typename U> class AllocatorType = std::allocator,
2419  template<typename T, typename SFINAE = void> class JSONSerializer =
2422 
2423 /*!
2424 @brief JSON Pointer
2425 
2426 A JSON pointer defines a string syntax for identifying a specific value
2427 within a JSON document. It can be used with functions `at` and
2428 `operator[]`. Furthermore, JSON pointers are the base for JSON patches.
2429 
2430 @sa [RFC 6901](https://tools.ietf.org/html/rfc6901)
2431 
2432 @since version 2.0.0
2433 */
2434 template<typename BasicJsonType>
2436 
2437 /*!
2438 @brief default JSON class
2439 
2440 This type is the default specialization of the @ref basic_json class which
2441 uses the standard template types.
2442 
2443 @since version 1.0.0
2444 */
2446 } // namespace nlohmann
2447 
2448 #endif // INCLUDE_NLOHMANN_JSON_FWD_HPP_
2449 
2450 
2451 namespace nlohmann
2452 {
2453 /*!
2454 @brief detail namespace with internal helper functions
2455 
2456 This namespace collects functions that should not be exposed,
2457 implementations of some @ref basic_json methods, and meta-programming helpers.
2458 
2459 @since version 2.1.0
2460 */
2461 namespace detail
2462 {
2463 /////////////
2464 // helpers //
2465 /////////////
2466 
2467 // Note to maintainers:
2468 //
2469 // Every trait in this file expects a non CV-qualified type.
2470 // The only exceptions are in the 'aliases for detected' section
2471 // (i.e. those of the form: decltype(T::member_function(std::declval<T>())))
2472 //
2473 // In this case, T has to be properly CV-qualified to constraint the function arguments
2474 // (e.g. to_json(BasicJsonType&, const T&))
2475 
2476 template<typename> struct is_basic_json : std::false_type {};
2477 
2479 struct is_basic_json<NLOHMANN_BASIC_JSON_TPL> : std::true_type {};
2480 
2481 //////////////////////////
2482 // aliases for detected //
2483 //////////////////////////
2484 
2485 template <typename T>
2486 using mapped_type_t = typename T::mapped_type;
2487 
2488 template <typename T>
2489 using key_type_t = typename T::key_type;
2490 
2491 template <typename T>
2492 using value_type_t = typename T::value_type;
2493 
2494 template <typename T>
2495 using difference_type_t = typename T::difference_type;
2496 
2497 template <typename T>
2498 using pointer_t = typename T::pointer;
2499 
2500 template <typename T>
2501 using reference_t = typename T::reference;
2502 
2503 template <typename T>
2504 using iterator_category_t = typename T::iterator_category;
2505 
2506 template <typename T>
2507 using iterator_t = typename T::iterator;
2508 
2509 template <typename T, typename... Args>
2510 using to_json_function = decltype(T::to_json(std::declval<Args>()...));
2511 
2512 template <typename T, typename... Args>
2513 using from_json_function = decltype(T::from_json(std::declval<Args>()...));
2514 
2515 template <typename T, typename U>
2516 using get_template_function = decltype(std::declval<T>().template get<U>());
2517 
2518 // trait checking if JSONSerializer<T>::from_json(json const&, udt&) exists
2519 template <typename BasicJsonType, typename T, typename = void>
2520 struct has_from_json : std::false_type {};
2521 
2522 template <typename BasicJsonType, typename T>
2523 struct has_from_json<BasicJsonType, T,
2524  enable_if_t<not is_basic_json<T>::value>>
2525 {
2526  using serializer = typename BasicJsonType::template json_serializer<T, void>;
2527 
2528  static constexpr bool value =
2530  const BasicJsonType&, T&>::value;
2531 };
2532 
2533 // This trait checks if JSONSerializer<T>::from_json(json const&) exists
2534 // this overload is used for non-default-constructible user-defined-types
2535 template <typename BasicJsonType, typename T, typename = void>
2536 struct has_non_default_from_json : std::false_type {};
2537 
2538 template<typename BasicJsonType, typename T>
2539 struct has_non_default_from_json<BasicJsonType, T, enable_if_t<not is_basic_json<T>::value>>
2540 {
2541  using serializer = typename BasicJsonType::template json_serializer<T, void>;
2542 
2543  static constexpr bool value =
2545  const BasicJsonType&>::value;
2546 };
2547 
2548 // This trait checks if BasicJsonType::json_serializer<T>::to_json exists
2549 // Do not evaluate the trait when T is a basic_json type, to avoid template instantiation infinite recursion.
2550 template <typename BasicJsonType, typename T, typename = void>
2551 struct has_to_json : std::false_type {};
2552 
2553 template <typename BasicJsonType, typename T>
2554 struct has_to_json<BasicJsonType, T, enable_if_t<not is_basic_json<T>::value>>
2555 {
2556  using serializer = typename BasicJsonType::template json_serializer<T, void>;
2557 
2558  static constexpr bool value =
2560  T>::value;
2561 };
2562 
2563 
2564 ///////////////////
2565 // is_ functions //
2566 ///////////////////
2567 
2568 template <typename T, typename = void>
2569 struct is_iterator_traits : std::false_type {};
2570 
2571 template <typename T>
2573 {
2574  private:
2576 
2577  public:
2578  static constexpr auto value =
2584 };
2585 
2586 // source: https://stackoverflow.com/a/37193089/4116453
2587 
2588 template <typename T, typename = void>
2589 struct is_complete_type : std::false_type {};
2590 
2591 template <typename T>
2592 struct is_complete_type<T, decltype(void(sizeof(T)))> : std::true_type {};
2593 
2594 template <typename BasicJsonType, typename CompatibleObjectType,
2595  typename = void>
2596 struct is_compatible_object_type_impl : std::false_type {};
2597 
2598 template <typename BasicJsonType, typename CompatibleObjectType>
2600  BasicJsonType, CompatibleObjectType,
2601  enable_if_t<is_detected<mapped_type_t, CompatibleObjectType>::value and
2602  is_detected<key_type_t, CompatibleObjectType>::value >>
2603 {
2604 
2605  using object_t = typename BasicJsonType::object_t;
2606 
2607  // macOS's is_constructible does not play well with nonesuch...
2608  static constexpr bool value =
2609  std::is_constructible<typename object_t::key_type,
2610  typename CompatibleObjectType::key_type>::value and
2611  std::is_constructible<typename object_t::mapped_type,
2612  typename CompatibleObjectType::mapped_type>::value;
2613 };
2614 
2615 template <typename BasicJsonType, typename CompatibleObjectType>
2617  : is_compatible_object_type_impl<BasicJsonType, CompatibleObjectType> {};
2618 
2619 template <typename BasicJsonType, typename ConstructibleObjectType,
2620  typename = void>
2621 struct is_constructible_object_type_impl : std::false_type {};
2622 
2623 template <typename BasicJsonType, typename ConstructibleObjectType>
2625  BasicJsonType, ConstructibleObjectType,
2626  enable_if_t<is_detected<mapped_type_t, ConstructibleObjectType>::value and
2627  is_detected<key_type_t, ConstructibleObjectType>::value >>
2628 {
2629  using object_t = typename BasicJsonType::object_t;
2630 
2631  static constexpr bool value =
2635  (std::is_constructible<typename ConstructibleObjectType::key_type,
2636  typename object_t::key_type>::value and
2637  std::is_same <
2638  typename object_t::mapped_type,
2639  typename ConstructibleObjectType::mapped_type >::value)) or
2640  (has_from_json<BasicJsonType,
2641  typename ConstructibleObjectType::mapped_type>::value or
2643  BasicJsonType,
2644  typename ConstructibleObjectType::mapped_type >::value);
2645 };
2646 
2647 template <typename BasicJsonType, typename ConstructibleObjectType>
2649  : is_constructible_object_type_impl<BasicJsonType,
2650  ConstructibleObjectType> {};
2651 
2652 template <typename BasicJsonType, typename CompatibleStringType,
2653  typename = void>
2654 struct is_compatible_string_type_impl : std::false_type {};
2655 
2656 template <typename BasicJsonType, typename CompatibleStringType>
2658  BasicJsonType, CompatibleStringType,
2659  enable_if_t<is_detected_exact<typename BasicJsonType::string_t::value_type,
2660  value_type_t, CompatibleStringType>::value >>
2661 {
2662  static constexpr auto value =
2664 };
2665 
2666 template <typename BasicJsonType, typename ConstructibleStringType>
2668  : is_compatible_string_type_impl<BasicJsonType, ConstructibleStringType> {};
2669 
2670 template <typename BasicJsonType, typename ConstructibleStringType,
2671  typename = void>
2672 struct is_constructible_string_type_impl : std::false_type {};
2673 
2674 template <typename BasicJsonType, typename ConstructibleStringType>
2676  BasicJsonType, ConstructibleStringType,
2677  enable_if_t<is_detected_exact<typename BasicJsonType::string_t::value_type,
2678  value_type_t, ConstructibleStringType>::value >>
2679 {
2680  static constexpr auto value =
2681  std::is_constructible<ConstructibleStringType,
2682  typename BasicJsonType::string_t>::value;
2683 };
2684 
2685 template <typename BasicJsonType, typename ConstructibleStringType>
2687  : is_constructible_string_type_impl<BasicJsonType, ConstructibleStringType> {};
2688 
2689 template <typename BasicJsonType, typename CompatibleArrayType, typename = void>
2690 struct is_compatible_array_type_impl : std::false_type {};
2691 
2692 template <typename BasicJsonType, typename CompatibleArrayType>
2694  BasicJsonType, CompatibleArrayType,
2695  enable_if_t<is_detected<value_type_t, CompatibleArrayType>::value and
2696  is_detected<iterator_t, CompatibleArrayType>::value and
2697 // This is needed because json_reverse_iterator has a ::iterator type...
2698 // Therefore it is detected as a CompatibleArrayType.
2699 // The real fix would be to have an Iterable concept.
2700  not is_iterator_traits<
2701  iterator_traits<CompatibleArrayType>>::value >>
2702 {
2703  static constexpr bool value =
2704  std::is_constructible<BasicJsonType,
2705  typename CompatibleArrayType::value_type>::value;
2706 };
2707 
2708 template <typename BasicJsonType, typename CompatibleArrayType>
2710  : is_compatible_array_type_impl<BasicJsonType, CompatibleArrayType> {};
2711 
2712 template <typename BasicJsonType, typename ConstructibleArrayType, typename = void>
2713 struct is_constructible_array_type_impl : std::false_type {};
2714 
2715 template <typename BasicJsonType, typename ConstructibleArrayType>
2717  BasicJsonType, ConstructibleArrayType,
2718  enable_if_t<std::is_same<ConstructibleArrayType,
2719  typename BasicJsonType::value_type>::value >>
2720  : std::true_type {};
2721 
2722 template <typename BasicJsonType, typename ConstructibleArrayType>
2724  BasicJsonType, ConstructibleArrayType,
2725  enable_if_t<not std::is_same<ConstructibleArrayType,
2726  typename BasicJsonType::value_type>::value and
2727  std::is_default_constructible<ConstructibleArrayType>::value and
2728 (std::is_move_assignable<ConstructibleArrayType>::value or
2729  std::is_copy_assignable<ConstructibleArrayType>::value) and
2730 is_detected<value_type_t, ConstructibleArrayType>::value and
2731 is_detected<iterator_t, ConstructibleArrayType>::value and
2733 detected_t<value_type_t, ConstructibleArrayType>>::value >>
2734 {
2735  static constexpr bool value =
2736  // This is needed because json_reverse_iterator has a ::iterator type,
2737  // furthermore, std::back_insert_iterator (and other iterators) have a
2738  // base class `iterator`... Therefore it is detected as a
2739  // ConstructibleArrayType. The real fix would be to have an Iterable
2740  // concept.
2742 
2743  (std::is_same<typename ConstructibleArrayType::value_type,
2744  typename BasicJsonType::array_t::value_type>::value or
2745  has_from_json<BasicJsonType,
2746  typename ConstructibleArrayType::value_type>::value or
2748  BasicJsonType, typename ConstructibleArrayType::value_type >::value);
2749 };
2750 
2751 template <typename BasicJsonType, typename ConstructibleArrayType>
2753  : is_constructible_array_type_impl<BasicJsonType, ConstructibleArrayType> {};
2754 
2755 template <typename RealIntegerType, typename CompatibleNumberIntegerType,
2756  typename = void>
2757 struct is_compatible_integer_type_impl : std::false_type {};
2758 
2759 template <typename RealIntegerType, typename CompatibleNumberIntegerType>
2761  RealIntegerType, CompatibleNumberIntegerType,
2762  enable_if_t<std::is_integral<RealIntegerType>::value and
2763  std::is_integral<CompatibleNumberIntegerType>::value and
2764  not std::is_same<bool, CompatibleNumberIntegerType>::value >>
2765 {
2766  // is there an assert somewhere on overflows?
2767  using RealLimits = std::numeric_limits<RealIntegerType>;
2768  using CompatibleLimits = std::numeric_limits<CompatibleNumberIntegerType>;
2769 
2770  static constexpr auto value =
2771  std::is_constructible<RealIntegerType,
2772  CompatibleNumberIntegerType>::value and
2773  CompatibleLimits::is_integer and
2774  RealLimits::is_signed == CompatibleLimits::is_signed;
2775 };
2776 
2777 template <typename RealIntegerType, typename CompatibleNumberIntegerType>
2779  : is_compatible_integer_type_impl<RealIntegerType,
2780  CompatibleNumberIntegerType> {};
2781 
2782 template <typename BasicJsonType, typename CompatibleType, typename = void>
2783 struct is_compatible_type_impl: std::false_type {};
2784 
2785 template <typename BasicJsonType, typename CompatibleType>
2787  BasicJsonType, CompatibleType,
2788  enable_if_t<is_complete_type<CompatibleType>::value >>
2789 {
2790  static constexpr bool value =
2792 };
2793 
2794 template <typename BasicJsonType, typename CompatibleType>
2796  : is_compatible_type_impl<BasicJsonType, CompatibleType> {};
2797 
2798 // https://en.cppreference.com/w/cpp/types/conjunction
2799 template<class...> struct conjunction : std::true_type { };
2800 template<class B1> struct conjunction<B1> : B1 { };
2801 template<class B1, class... Bn>
2802 struct conjunction<B1, Bn...>
2803 : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
2804 
2805 template <typename T1, typename T2>
2806 struct is_constructible_tuple : std::false_type {};
2807 
2808 template <typename T1, typename... Args>
2809 struct is_constructible_tuple<T1, std::tuple<Args...>> : conjunction<std::is_constructible<T1, Args>...> {};
2810 } // namespace detail
2811 } // namespace nlohmann
2812 
2813 // #include <nlohmann/detail/value_t.hpp>
2814 
2815 
2816 #include <array> // array
2817 #include <ciso646> // and
2818 #include <cstddef> // size_t
2819 #include <cstdint> // uint8_t
2820 #include <string> // string
2821 
2822 namespace nlohmann
2823 {
2824 namespace detail
2825 {
2826 ///////////////////////////
2827 // JSON type enumeration //
2828 ///////////////////////////
2829 
2830 /*!
2831 @brief the JSON type enumeration
2832 
2833 This enumeration collects the different JSON types. It is internally used to
2834 distinguish the stored values, and the functions @ref basic_json::is_null(),
2835 @ref basic_json::is_object(), @ref basic_json::is_array(),
2836 @ref basic_json::is_string(), @ref basic_json::is_boolean(),
2837 @ref basic_json::is_number() (with @ref basic_json::is_number_integer(),
2838 @ref basic_json::is_number_unsigned(), and @ref basic_json::is_number_float()),
2839 @ref basic_json::is_discarded(), @ref basic_json::is_primitive(), and
2840 @ref basic_json::is_structured() rely on it.
2841 
2842 @note There are three enumeration entries (number_integer, number_unsigned, and
2843 number_float), because the library distinguishes these three types for numbers:
2844 @ref basic_json::number_unsigned_t is used for unsigned integers,
2845 @ref basic_json::number_integer_t is used for signed integers, and
2846 @ref basic_json::number_float_t is used for floating-point numbers or to
2847 approximate integers which do not fit in the limits of their respective type.
2848 
2849 @sa @ref basic_json::basic_json(const value_t value_type) -- create a JSON
2850 value with the default value for a given type
2851 
2852 @since version 1.0.0
2853 */
2854 enum class value_t : std::uint8_t
2855 {
2856  null, ///< null value
2857  object, ///< object (unordered set of name/value pairs)
2858  array, ///< array (ordered collection of values)
2859  string, ///< string value
2860  boolean, ///< boolean value
2861  number_integer, ///< number value (signed integer)
2862  number_unsigned, ///< number value (unsigned integer)
2863  number_float, ///< number value (floating-point)
2864  discarded ///< discarded by the the parser callback function
2865 };
2866 
2867 /*!
2868 @brief comparison operator for JSON types
2869 
2870 Returns an ordering that is similar to Python:
2871 - order: null < boolean < number < object < array < string
2872 - furthermore, each type is not smaller than itself
2873 - discarded values are not comparable
2874 
2875 @since version 1.0.0
2876 */
2877 inline bool operator<(const value_t lhs, const value_t rhs) noexcept
2878 {
2879  static constexpr std::array<std::uint8_t, 8> order = {{
2880  0 /* null */, 3 /* object */, 4 /* array */, 5 /* string */,
2881  1 /* boolean */, 2 /* integer */, 2 /* unsigned */, 2 /* float */
2882  }
2883  };
2884 
2885  const auto l_index = static_cast<std::size_t>(lhs);
2886  const auto r_index = static_cast<std::size_t>(rhs);
2887  return l_index < order.size() and r_index < order.size() and order[l_index] < order[r_index];
2888 }
2889 } // namespace detail
2890 } // namespace nlohmann
2891 
2892 
2893 namespace nlohmann
2894 {
2895 namespace detail
2896 {
2897 template<typename BasicJsonType>
2898 void from_json(const BasicJsonType& j, typename std::nullptr_t& n)
2899 {
2900  if (JSON_HEDLEY_UNLIKELY(not j.is_null()))
2901  {
2902  JSON_THROW(type_error::create(302, "type must be null, but is " + std::string(j.type_name())));
2903  }
2904  n = nullptr;
2905 }
2906 
2907 // overloads for basic_json template parameters
2908 template<typename BasicJsonType, typename ArithmeticType,
2911  int> = 0>
2912 void get_arithmetic_value(const BasicJsonType& j, ArithmeticType& val)
2913 {
2914  switch (static_cast<value_t>(j))
2915  {
2917  {
2918  val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
2919  break;
2920  }
2922  {
2923  val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
2924  break;
2925  }
2926  case value_t::number_float:
2927  {
2928  val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
2929  break;
2930  }
2931 
2932  default:
2933  JSON_THROW(type_error::create(302, "type must be number, but is " + std::string(j.type_name())));
2934  }
2935 }
2936 
2937 template<typename BasicJsonType>
2938 void from_json(const BasicJsonType& j, typename BasicJsonType::boolean_t& b)
2939 {
2940  if (JSON_HEDLEY_UNLIKELY(not j.is_boolean()))
2941  {
2942  JSON_THROW(type_error::create(302, "type must be boolean, but is " + std::string(j.type_name())));
2943  }
2944  b = *j.template get_ptr<const typename BasicJsonType::boolean_t*>();
2945 }
2946 
2947 template<typename BasicJsonType>
2948 void from_json(const BasicJsonType& j, typename BasicJsonType::string_t& s)
2949 {
2950  if (JSON_HEDLEY_UNLIKELY(not j.is_string()))
2951  {
2952  JSON_THROW(type_error::create(302, "type must be string, but is " + std::string(j.type_name())));
2953  }
2954  s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
2955 }
2956 
2957 template <
2958  typename BasicJsonType, typename ConstructibleStringType,
2959  enable_if_t <
2961  not std::is_same<typename BasicJsonType::string_t,
2962  ConstructibleStringType>::value,
2963  int > = 0 >
2964 void from_json(const BasicJsonType& j, ConstructibleStringType& s)
2965 {
2966  if (JSON_HEDLEY_UNLIKELY(not j.is_string()))
2967  {
2968  JSON_THROW(type_error::create(302, "type must be string, but is " + std::string(j.type_name())));
2969  }
2970 
2971  s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
2972 }
2973 
2974 template<typename BasicJsonType>
2975 void from_json(const BasicJsonType& j, typename BasicJsonType::number_float_t& val)
2976 {
2977  get_arithmetic_value(j, val);
2978 }
2979 
2980 template<typename BasicJsonType>
2981 void from_json(const BasicJsonType& j, typename BasicJsonType::number_unsigned_t& val)
2982 {
2983  get_arithmetic_value(j, val);
2984 }
2985 
2986 template<typename BasicJsonType>
2987 void from_json(const BasicJsonType& j, typename BasicJsonType::number_integer_t& val)
2988 {
2989  get_arithmetic_value(j, val);
2990 }
2991 
2992 template<typename BasicJsonType, typename EnumType,
2994 void from_json(const BasicJsonType& j, EnumType& e)
2995 {
2997  get_arithmetic_value(j, val);
2998  e = static_cast<EnumType>(val);
2999 }
3000 
3001 // forward_list doesn't have an insert method
3002 template<typename BasicJsonType, typename T, typename Allocator,
3004 void from_json(const BasicJsonType& j, std::forward_list<T, Allocator>& l)
3005 {
3006  if (JSON_HEDLEY_UNLIKELY(not j.is_array()))
3007  {
3008  JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
3009  }
3010  l.clear();
3011  std::transform(j.rbegin(), j.rend(),
3012  std::front_inserter(l), [](const BasicJsonType & i)
3013  {
3014  return i.template get<T>();
3015  });
3016 }
3017 
3018 // valarray doesn't have an insert method
3019 template<typename BasicJsonType, typename T,
3021 void from_json(const BasicJsonType& j, std::valarray<T>& l)
3022 {
3023  if (JSON_HEDLEY_UNLIKELY(not j.is_array()))
3024  {
3025  JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
3026  }
3027  l.resize(j.size());
3028  std::copy(j.begin(), j.end(), std::begin(l));
3029 }
3030 
3031 template <typename BasicJsonType, typename T, std::size_t N>
3032 auto from_json(const BasicJsonType& j, T (&arr)[N])
3033 -> decltype(j.template get<T>(), void())
3034 {
3035  for (std::size_t i = 0; i < N; ++i)
3036  {
3037  arr[i] = j.at(i).template get<T>();
3038  }
3039 }
3040 
3041 template<typename BasicJsonType>
3042 void from_json_array_impl(const BasicJsonType& j, typename BasicJsonType::array_t& arr, priority_tag<3> /*unused*/)
3043 {
3044  arr = *j.template get_ptr<const typename BasicJsonType::array_t*>();
3045 }
3046 
3047 template <typename BasicJsonType, typename T, std::size_t N>
3048 auto from_json_array_impl(const BasicJsonType& j, std::array<T, N>& arr,
3049  priority_tag<2> /*unused*/)
3050 -> decltype(j.template get<T>(), void())
3051 {
3052  for (std::size_t i = 0; i < N; ++i)
3053  {
3054  arr[i] = j.at(i).template get<T>();
3055  }
3056 }
3057 
3058 template<typename BasicJsonType, typename ConstructibleArrayType>
3059 auto from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr, priority_tag<1> /*unused*/)
3060 -> decltype(
3061  arr.reserve(std::declval<typename ConstructibleArrayType::size_type>()),
3062  j.template get<typename ConstructibleArrayType::value_type>(),
3063  void())
3064 {
3065  using std::end;
3066 
3067  ConstructibleArrayType ret;
3068  ret.reserve(j.size());
3069  std::transform(j.begin(), j.end(),
3070  std::inserter(ret, end(ret)), [](const BasicJsonType & i)
3071  {
3072  // get<BasicJsonType>() returns *this, this won't call a from_json
3073  // method when value_type is BasicJsonType
3074  return i.template get<typename ConstructibleArrayType::value_type>();
3075  });
3076  arr = std::move(ret);
3077 }
3078 
3079 template <typename BasicJsonType, typename ConstructibleArrayType>
3080 void from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr,
3081  priority_tag<0> /*unused*/)
3082 {
3083  using std::end;
3084 
3085  ConstructibleArrayType ret;
3087  j.begin(), j.end(), std::inserter(ret, end(ret)),
3088  [](const BasicJsonType & i)
3089  {
3090  // get<BasicJsonType>() returns *this, this won't call a from_json
3091  // method when value_type is BasicJsonType
3092  return i.template get<typename ConstructibleArrayType::value_type>();
3093  });
3094  arr = std::move(ret);
3095 }
3096 
3097 template <typename BasicJsonType, typename ConstructibleArrayType,
3098  enable_if_t <
3103  int > = 0 >
3104 
3105 auto from_json(const BasicJsonType& j, ConstructibleArrayType& arr)
3106 -> decltype(from_json_array_impl(j, arr, priority_tag<3> {}),
3107 j.template get<typename ConstructibleArrayType::value_type>(),
3108 void())
3109 {
3110  if (JSON_HEDLEY_UNLIKELY(not j.is_array()))
3111  {
3112  JSON_THROW(type_error::create(302, "type must be array, but is " +
3113  std::string(j.type_name())));
3114  }
3115 
3117 }
3118 
3119 template<typename BasicJsonType, typename ConstructibleObjectType,
3121 void from_json(const BasicJsonType& j, ConstructibleObjectType& obj)
3122 {
3123  if (JSON_HEDLEY_UNLIKELY(not j.is_object()))
3124  {
3125  JSON_THROW(type_error::create(302, "type must be object, but is " + std::string(j.type_name())));
3126  }
3127 
3128  ConstructibleObjectType ret;
3129  auto inner_object = j.template get_ptr<const typename BasicJsonType::object_t*>();
3130  using value_type = typename ConstructibleObjectType::value_type;
3132  inner_object->begin(), inner_object->end(),
3133  std::inserter(ret, ret.begin()),
3134  [](typename BasicJsonType::object_t::value_type const & p)
3135  {
3136  return value_type(p.first, p.second.template get<typename ConstructibleObjectType::mapped_type>());
3137  });
3138  obj = std::move(ret);
3139 }
3140 
3141 // overload for arithmetic types, not chosen for basic_json template arguments
3142 // (BooleanType, etc..); note: Is it really necessary to provide explicit
3143 // overloads for boolean_t etc. in case of a custom BooleanType which is not
3144 // an arithmetic type?
3145 template<typename BasicJsonType, typename ArithmeticType,
3146  enable_if_t <
3152  int> = 0>
3153 void from_json(const BasicJsonType& j, ArithmeticType& val)
3154 {
3155  switch (static_cast<value_t>(j))
3156  {
3158  {
3159  val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
3160  break;
3161  }
3163  {
3164  val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
3165  break;
3166  }
3167  case value_t::number_float:
3168  {
3169  val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
3170  break;
3171  }
3172  case value_t::boolean:
3173  {
3174  val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::boolean_t*>());
3175  break;
3176  }
3177 
3178  default:
3179  JSON_THROW(type_error::create(302, "type must be number, but is " + std::string(j.type_name())));
3180  }
3181 }
3182 
3183 template<typename BasicJsonType, typename A1, typename A2>
3184 void from_json(const BasicJsonType& j, std::pair<A1, A2>& p)
3185 {
3186  p = {j.at(0).template get<A1>(), j.at(1).template get<A2>()};
3187 }
3188 
3189 template<typename BasicJsonType, typename Tuple, std::size_t... Idx>
3190 void from_json_tuple_impl(const BasicJsonType& j, Tuple& t, index_sequence<Idx...> /*unused*/)
3191 {
3192  t = std::make_tuple(j.at(Idx).template get<typename std::tuple_element<Idx, Tuple>::type>()...);
3193 }
3194 
3195 template<typename BasicJsonType, typename... Args>
3196 void from_json(const BasicJsonType& j, std::tuple<Args...>& t)
3197 {
3199 }
3200 
3201 template <typename BasicJsonType, typename Key, typename Value, typename Compare, typename Allocator,
3202  typename = enable_if_t<not std::is_constructible<
3203  typename BasicJsonType::string_t, Key>::value>>
3204 void from_json(const BasicJsonType& j, std::map<Key, Value, Compare, Allocator>& m)
3205 {
3206  if (JSON_HEDLEY_UNLIKELY(not j.is_array()))
3207  {
3208  JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
3209  }
3210  m.clear();
3211  for (const auto& p : j)
3212  {
3213  if (JSON_HEDLEY_UNLIKELY(not p.is_array()))
3214  {
3215  JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(p.type_name())));
3216  }
3217  m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>());
3218  }
3219 }
3220 
3221 template <typename BasicJsonType, typename Key, typename Value, typename Hash, typename KeyEqual, typename Allocator,
3222  typename = enable_if_t<not std::is_constructible<
3223  typename BasicJsonType::string_t, Key>::value>>
3224 void from_json(const BasicJsonType& j, std::unordered_map<Key, Value, Hash, KeyEqual, Allocator>& m)
3225 {
3226  if (JSON_HEDLEY_UNLIKELY(not j.is_array()))
3227  {
3228  JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
3229  }
3230  m.clear();
3231  for (const auto& p : j)
3232  {
3233  if (JSON_HEDLEY_UNLIKELY(not p.is_array()))
3234  {
3235  JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(p.type_name())));
3236  }
3237  m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>());
3238  }
3239 }
3240 
3242 {
3243  template<typename BasicJsonType, typename T>
3244  auto operator()(const BasicJsonType& j, T& val) const
3245  noexcept(noexcept(from_json(j, val)))
3246  -> decltype(from_json(j, val), void())
3247  {
3248  return from_json(j, val);
3249  }
3250 };
3251 } // namespace detail
3252 
3253 /// namespace to hold default `from_json` function
3254 /// to see why this is required:
3255 /// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html
3256 namespace
3257 {
3259 } // namespace
3260 } // namespace nlohmann
3261 
3262 // #include <nlohmann/detail/conversions/to_json.hpp>
3263 
3264 
3265 #include <algorithm> // copy
3266 #include <ciso646> // or, and, not
3267 #include <iterator> // begin, end
3268 #include <string> // string
3269 #include <tuple> // tuple, get
3270 #include <type_traits> // is_same, is_constructible, is_floating_point, is_enum, underlying_type
3271 #include <utility> // move, forward, declval, pair
3272 #include <valarray> // valarray
3273 #include <vector> // vector
3274 
3275 // #include <nlohmann/detail/iterators/iteration_proxy.hpp>
3276 
3277 
3278 #include <cstddef> // size_t
3279 #include <iterator> // input_iterator_tag
3280 #include <string> // string, to_string
3281 #include <tuple> // tuple_size, get, tuple_element
3282 
3283 // #include <nlohmann/detail/meta/type_traits.hpp>
3284 
3285 // #include <nlohmann/detail/value_t.hpp>
3286 
3287 
3288 namespace nlohmann
3289 {
3290 namespace detail
3291 {
3292 template<typename string_type>
3293 void int_to_string( string_type& target, std::size_t value )
3294 {
3295  target = std::to_string(value);
3296 }
3297 template <typename IteratorType> class iteration_proxy_value
3298 {
3299  public:
3300  using difference_type = std::ptrdiff_t;
3302  using pointer = value_type * ;
3303  using reference = value_type & ;
3304  using iterator_category = std::input_iterator_tag;
3305  using string_type = typename std::remove_cv< typename std::remove_reference<decltype( std::declval<IteratorType>().key() ) >::type >::type;
3306 
3307  private:
3308  /// the iterator
3309  IteratorType anchor;
3310  /// an index for arrays (used to create key names)
3311  std::size_t array_index = 0;
3312  /// last stringified array index
3313  mutable std::size_t array_index_last = 0;
3314  /// a string representation of the array index
3315  mutable string_type array_index_str = "0";
3316  /// an empty string (to return a reference for primitive values)
3317  const string_type empty_str = "";
3318 
3319  public:
3320  explicit iteration_proxy_value(IteratorType it) noexcept : anchor(it) {}
3321 
3322  /// dereference operator (needed for range-based for)
3324  {
3325  return *this;
3326  }
3327 
3328  /// increment operator (needed for range-based for)
3330  {
3331  ++anchor;
3332  ++array_index;
3333 
3334  return *this;
3335  }
3336 
3337  /// equality operator (needed for InputIterator)
3338  bool operator==(const iteration_proxy_value& o) const
3339  {
3340  return anchor == o.anchor;
3341  }
3342 
3343  /// inequality operator (needed for range-based for)
3344  bool operator!=(const iteration_proxy_value& o) const
3345  {
3346  return anchor != o.anchor;
3347  }
3348 
3349  /// return key of the iterator
3350  const string_type& key() const
3351  {
3352  assert(anchor.m_object != nullptr);
3353 
3354  switch (anchor.m_object->type())
3355  {
3356  // use integer array index as key
3357  case value_t::array:
3358  {
3359  if (array_index != array_index_last)
3360  {
3361  int_to_string( array_index_str, array_index );
3362  array_index_last = array_index;
3363  }
3364  return array_index_str;
3365  }
3366 
3367  // use key from the object
3368  case value_t::object:
3369  return anchor.key();
3370 
3371  // use an empty key for all primitive types
3372  default:
3373  return empty_str;
3374  }
3375  }
3376 
3377  /// return value of the iterator
3378  typename IteratorType::reference value() const
3379  {
3380  return anchor.value();
3381  }
3382 };
3383 
3384 /// proxy class for the items() function
3385 template<typename IteratorType> class iteration_proxy
3386 {
3387  private:
3388  /// the container to iterate
3389  typename IteratorType::reference container;
3390 
3391  public:
3392  /// construct iteration proxy from a container
3393  explicit iteration_proxy(typename IteratorType::reference cont) noexcept
3394  : container(cont) {}
3395 
3396  /// return iterator begin (needed for range-based for)
3398  {
3399  return iteration_proxy_value<IteratorType>(container.begin());
3400  }
3401 
3402  /// return iterator end (needed for range-based for)
3404  {
3405  return iteration_proxy_value<IteratorType>(container.end());
3406  }
3407 };
3408 // Structured Bindings Support
3409 // For further reference see https://blog.tartanllama.xyz/structured-bindings/
3410 // And see https://github.com/nlohmann/json/pull/1391
3411 template <std::size_t N, typename IteratorType, enable_if_t<N == 0, int> = 0>
3412 auto get(const nlohmann::detail::iteration_proxy_value<IteratorType>& i) -> decltype(i.key())
3413 {
3414  return i.key();
3415 }
3416 // Structured Bindings Support
3417 // For further reference see https://blog.tartanllama.xyz/structured-bindings/
3418 // And see https://github.com/nlohmann/json/pull/1391
3419 template <std::size_t N, typename IteratorType, enable_if_t<N == 1, int> = 0>
3420 auto get(const nlohmann::detail::iteration_proxy_value<IteratorType>& i) -> decltype(i.value())
3421 {
3422  return i.value();
3423 }
3424 } // namespace detail
3425 } // namespace nlohmann
3426 
3427 // The Addition to the STD Namespace is required to add
3428 // Structured Bindings Support to the iteration_proxy_value class
3429 // For further reference see https://blog.tartanllama.xyz/structured-bindings/
3430 // And see https://github.com/nlohmann/json/pull/1391
3431 namespace std
3432 {
3433 #if defined(__clang__)
3434  // Fix: https://github.com/nlohmann/json/issues/1401
3435  #pragma clang diagnostic push
3436  #pragma clang diagnostic ignored "-Wmismatched-tags"
3437 #endif
3438 template <typename IteratorType>
3439 class tuple_size<::nlohmann::detail::iteration_proxy_value<IteratorType>>
3440  : public std::integral_constant<std::size_t, 2> {};
3441 
3442 template <std::size_t N, typename IteratorType>
3443 class tuple_element<N, ::nlohmann::detail::iteration_proxy_value<IteratorType >>
3444 {
3445  public:
3446  using type = decltype(
3447  get<N>(std::declval <
3449 };
3450 #if defined(__clang__)
3451  #pragma clang diagnostic pop
3452 #endif
3453 } // namespace std
3454 
3455 // #include <nlohmann/detail/meta/cpp_future.hpp>
3456 
3457 // #include <nlohmann/detail/meta/type_traits.hpp>
3458 
3459 // #include <nlohmann/detail/value_t.hpp>
3460 
3461 
3462 namespace nlohmann
3463 {
3464 namespace detail
3465 {
3466 //////////////////
3467 // constructors //
3468 //////////////////
3469 
3470 template<value_t> struct external_constructor;
3471 
3472 template<>
3474 {
3475  template<typename BasicJsonType>
3476  static void construct(BasicJsonType& j, typename BasicJsonType::boolean_t b) noexcept
3477  {
3478  j.m_type = value_t::boolean;
3479  j.m_value = b;
3480  j.assert_invariant();
3481  }
3482 };
3483 
3484 template<>
3486 {
3487  template<typename BasicJsonType>
3488  static void construct(BasicJsonType& j, const typename BasicJsonType::string_t& s)
3489  {
3490  j.m_type = value_t::string;
3491  j.m_value = s;
3492  j.assert_invariant();
3493  }
3494 
3495  template<typename BasicJsonType>
3496  static void construct(BasicJsonType& j, typename BasicJsonType::string_t&& s)
3497  {
3498  j.m_type = value_t::string;
3499  j.m_value = std::move(s);
3500  j.assert_invariant();
3501  }
3502 
3503  template<typename BasicJsonType, typename CompatibleStringType,
3505  int> = 0>
3506  static void construct(BasicJsonType& j, const CompatibleStringType& str)
3507  {
3508  j.m_type = value_t::string;
3509  j.m_value.string = j.template create<typename BasicJsonType::string_t>(str);
3510  j.assert_invariant();
3511  }
3512 };
3513 
3514 template<>
3516 {
3517  template<typename BasicJsonType>
3518  static void construct(BasicJsonType& j, typename BasicJsonType::number_float_t val) noexcept
3519  {
3520  j.m_type = value_t::number_float;
3521  j.m_value = val;
3522  j.assert_invariant();
3523  }
3524 };
3525 
3526 template<>
3528 {
3529  template<typename BasicJsonType>
3530  static void construct(BasicJsonType& j, typename BasicJsonType::number_unsigned_t val) noexcept
3531  {
3532  j.m_type = value_t::number_unsigned;
3533  j.m_value = val;
3534  j.assert_invariant();
3535  }
3536 };
3537 
3538 template<>
3540 {
3541  template<typename BasicJsonType>
3542  static void construct(BasicJsonType& j, typename BasicJsonType::number_integer_t val) noexcept
3543  {
3544  j.m_type = value_t::number_integer;
3545  j.m_value = val;
3546  j.assert_invariant();
3547  }
3548 };
3549 
3550 template<>
3552 {
3553  template<typename BasicJsonType>
3554  static void construct(BasicJsonType& j, const typename BasicJsonType::array_t& arr)
3555  {
3556  j.m_type = value_t::array;
3557  j.m_value = arr;
3558  j.assert_invariant();
3559  }
3560 
3561  template<typename BasicJsonType>
3562  static void construct(BasicJsonType& j, typename BasicJsonType::array_t&& arr)
3563  {
3564  j.m_type = value_t::array;
3565  j.m_value = std::move(arr);
3566  j.assert_invariant();
3567  }
3568 
3569  template<typename BasicJsonType, typename CompatibleArrayType,
3571  int> = 0>
3572  static void construct(BasicJsonType& j, const CompatibleArrayType& arr)
3573  {
3574  using std::begin;
3575  using std::end;
3576  j.m_type = value_t::array;
3577  j.m_value.array = j.template create<typename BasicJsonType::array_t>(begin(arr), end(arr));
3578  j.assert_invariant();
3579  }
3580 
3581  template<typename BasicJsonType>
3582  static void construct(BasicJsonType& j, const std::vector<bool>& arr)
3583  {
3584  j.m_type = value_t::array;
3585  j.m_value = value_t::array;
3586  j.m_value.array->reserve(arr.size());
3587  for (const bool x : arr)
3588  {
3589  j.m_value.array->push_back(x);
3590  }
3591  j.assert_invariant();
3592  }
3593 
3594  template<typename BasicJsonType, typename T,
3596  static void construct(BasicJsonType& j, const std::valarray<T>& arr)
3597  {
3598  j.m_type = value_t::array;
3599  j.m_value = value_t::array;
3600  j.m_value.array->resize(arr.size());
3601  if (arr.size() > 0)
3602  {
3603  std::copy(std::begin(arr), std::end(arr), j.m_value.array->begin());
3604  }
3605  j.assert_invariant();
3606  }
3607 };
3608 
3609 template<>
3611 {
3612  template<typename BasicJsonType>
3613  static void construct(BasicJsonType& j, const typename BasicJsonType::object_t& obj)
3614  {
3615  j.m_type = value_t::object;
3616  j.m_value = obj;
3617  j.assert_invariant();
3618  }
3619 
3620  template<typename BasicJsonType>
3621  static void construct(BasicJsonType& j, typename BasicJsonType::object_t&& obj)
3622  {
3623  j.m_type = value_t::object;
3624  j.m_value = std::move(obj);
3625  j.assert_invariant();
3626  }
3627 
3628  template<typename BasicJsonType, typename CompatibleObjectType,
3630  static void construct(BasicJsonType& j, const CompatibleObjectType& obj)
3631  {
3632  using std::begin;
3633  using std::end;
3634 
3635  j.m_type = value_t::object;
3636  j.m_value.object = j.template create<typename BasicJsonType::object_t>(begin(obj), end(obj));
3637  j.assert_invariant();
3638  }
3639 };
3640 
3641 /////////////
3642 // to_json //
3643 /////////////
3644 
3645 template<typename BasicJsonType, typename T,
3647 void to_json(BasicJsonType& j, T b) noexcept
3648 {
3650 }
3651 
3652 template<typename BasicJsonType, typename CompatibleString,
3654 void to_json(BasicJsonType& j, const CompatibleString& s)
3655 {
3657 }
3658 
3659 template<typename BasicJsonType>
3660 void to_json(BasicJsonType& j, typename BasicJsonType::string_t&& s)
3661 {
3663 }
3664 
3665 template<typename BasicJsonType, typename FloatType,
3667 void to_json(BasicJsonType& j, FloatType val) noexcept
3668 {
3669  external_constructor<value_t::number_float>::construct(j, static_cast<typename BasicJsonType::number_float_t>(val));
3670 }
3671 
3672 template<typename BasicJsonType, typename CompatibleNumberUnsignedType,
3674 void to_json(BasicJsonType& j, CompatibleNumberUnsignedType val) noexcept
3675 {
3676  external_constructor<value_t::number_unsigned>::construct(j, static_cast<typename BasicJsonType::number_unsigned_t>(val));
3677 }
3678 
3679 template<typename BasicJsonType, typename CompatibleNumberIntegerType,
3681 void to_json(BasicJsonType& j, CompatibleNumberIntegerType val) noexcept
3682 {
3683  external_constructor<value_t::number_integer>::construct(j, static_cast<typename BasicJsonType::number_integer_t>(val));
3684 }
3685 
3686 template<typename BasicJsonType, typename EnumType,
3688 void to_json(BasicJsonType& j, EnumType e) noexcept
3689 {
3690  using underlying_type = typename std::underlying_type<EnumType>::type;
3691  external_constructor<value_t::number_integer>::construct(j, static_cast<underlying_type>(e));
3692 }
3693 
3694 template<typename BasicJsonType>
3695 void to_json(BasicJsonType& j, const std::vector<bool>& e)
3696 {
3698 }
3699 
3700 template <typename BasicJsonType, typename CompatibleArrayType,
3701  enable_if_t<is_compatible_array_type<BasicJsonType,
3702  CompatibleArrayType>::value and
3703  not is_compatible_object_type<
3704  BasicJsonType, CompatibleArrayType>::value and
3707  int> = 0>
3708 void to_json(BasicJsonType& j, const CompatibleArrayType& arr)
3709 {
3711 }
3712 
3713 template<typename BasicJsonType, typename T,
3715 void to_json(BasicJsonType& j, const std::valarray<T>& arr)
3716 {
3718 }
3719 
3720 template<typename BasicJsonType>
3721 void to_json(BasicJsonType& j, typename BasicJsonType::array_t&& arr)
3722 {
3724 }
3725 
3726 template<typename BasicJsonType, typename CompatibleObjectType,
3728 void to_json(BasicJsonType& j, const CompatibleObjectType& obj)
3729 {
3731 }
3732 
3733 template<typename BasicJsonType>
3734 void to_json(BasicJsonType& j, typename BasicJsonType::object_t&& obj)
3735 {
3737 }
3738 
3739 template <
3740  typename BasicJsonType, typename T, std::size_t N,
3741  enable_if_t<not std::is_constructible<typename BasicJsonType::string_t,
3742  const T(&)[N]>::value,
3743  int> = 0 >
3744 void to_json(BasicJsonType& j, const T(&arr)[N])
3745 {
3747 }
3748 
3750 void to_json(BasicJsonType& j, const std::pair<T1, T2>& p)
3751 {
3752  j = { p.first, p.second };
3753 }
3754 
3755 // for https://github.com/nlohmann/json/pull/1134
3756 template < typename BasicJsonType, typename T,
3757  enable_if_t<std::is_same<T, iteration_proxy_value<typename BasicJsonType::iterator>>::value, int> = 0>
3758 void to_json(BasicJsonType& j, const T& b)
3759 {
3760  j = { {b.key(), b.value()} };
3761 }
3762 
3763 template<typename BasicJsonType, typename Tuple, std::size_t... Idx>
3764 void to_json_tuple_impl(BasicJsonType& j, const Tuple& t, index_sequence<Idx...> /*unused*/)
3765 {
3766  j = { std::get<Idx>(t)... };
3767 }
3768 
3770 void to_json(BasicJsonType& j, const T& t)
3771 {
3773 }
3774 
3776 {
3777  template<typename BasicJsonType, typename T>
3778  auto operator()(BasicJsonType& j, T&& val) const noexcept(noexcept(to_json(j, std::forward<T>(val))))
3779  -> decltype(to_json(j, std::forward<T>(val)), void())
3780  {
3781  return to_json(j, std::forward<T>(val));
3782  }
3783 };
3784 } // namespace detail
3785 
3786 /// namespace to hold default `to_json` function
3787 namespace
3788 {
3790 } // namespace
3791 } // namespace nlohmann
3792 
3793 
3794 namespace nlohmann
3795 {
3796 
3797 template<typename, typename>
3798 struct adl_serializer
3799 {
3800  /*!
3801  @brief convert a JSON value to any value type
3802 
3803  This function is usually called by the `get()` function of the
3804  @ref basic_json class (either explicit or via conversion operators).
3805 
3806  @param[in] j JSON value to read from
3807  @param[in,out] val value to write to
3808  */
3809  template<typename BasicJsonType, typename ValueType>
3810  static auto from_json(BasicJsonType&& j, ValueType& val) noexcept(
3811  noexcept(::nlohmann::from_json(std::forward<BasicJsonType>(j), val)))
3812  -> decltype(::nlohmann::from_json(std::forward<BasicJsonType>(j), val), void())
3813  {
3814  ::nlohmann::from_json(std::forward<BasicJsonType>(j), val);
3815  }
3816 
3817  /*!
3818  @brief convert any value type to a JSON value
3819 
3820  This function is usually called by the constructors of the @ref basic_json
3821  class.
3822 
3823  @param[in,out] j JSON value to write to
3824  @param[in] val value to read from
3825  */
3826  template <typename BasicJsonType, typename ValueType>
3827  static auto to_json(BasicJsonType& j, ValueType&& val) noexcept(
3828  noexcept(::nlohmann::to_json(j, std::forward<ValueType>(val))))
3829  -> decltype(::nlohmann::to_json(j, std::forward<ValueType>(val)), void())
3830  {
3831  ::nlohmann::to_json(j, std::forward<ValueType>(val));
3832  }
3833 };
3834 
3835 } // namespace nlohmann
3836 
3837 // #include <nlohmann/detail/conversions/from_json.hpp>
3838 
3839 // #include <nlohmann/detail/conversions/to_json.hpp>
3840 
3841 // #include <nlohmann/detail/exceptions.hpp>
3842 
3843 // #include <nlohmann/detail/input/binary_reader.hpp>
3844 
3845 
3846 #include <algorithm> // generate_n
3847 #include <array> // array
3848 #include <cassert> // assert
3849 #include <cmath> // ldexp
3850 #include <cstddef> // size_t
3851 #include <cstdint> // uint8_t, uint16_t, uint32_t, uint64_t
3852 #include <cstdio> // snprintf
3853 #include <cstring> // memcpy
3854 #include <iterator> // back_inserter
3855 #include <limits> // numeric_limits
3856 #include <string> // char_traits, string
3857 #include <utility> // make_pair, move
3858 
3859 // #include <nlohmann/detail/exceptions.hpp>
3860 
3861 // #include <nlohmann/detail/input/input_adapters.hpp>
3862 
3863 
3864 #include <array> // array
3865 #include <cassert> // assert
3866 #include <cstddef> // size_t
3867 #include <cstdio> //FILE *
3868 #include <cstring> // strlen
3869 #include <istream> // istream
3870 #include <iterator> // begin, end, iterator_traits, random_access_iterator_tag, distance, next
3871 #include <memory> // shared_ptr, make_shared, addressof
3872 #include <numeric> // accumulate
3873 #include <string> // string, char_traits
3874 #include <type_traits> // enable_if, is_base_of, is_pointer, is_integral, remove_pointer
3875 #include <utility> // pair, declval
3876 
3877 // #include <nlohmann/detail/iterators/iterator_traits.hpp>
3878 
3879 // #include <nlohmann/detail/macro_scope.hpp>
3880 
3881 
3882 namespace nlohmann
3883 {
3884 namespace detail
3885 {
3886 /// the supported input formats
3888 
3889 ////////////////////
3890 // input adapters //
3891 ////////////////////
3892 
3893 /*!
3894 @brief abstract input adapter interface
3895 
3896 Produces a stream of std::char_traits<char>::int_type characters from a
3897 std::istream, a buffer, or some other input type. Accepts the return of
3898 exactly one non-EOF character for future input. The int_type characters
3899 returned consist of all valid char values as positive values (typically
3900 unsigned char), plus an EOF value outside that range, specified by the value
3901 of the function std::char_traits<char>::eof(). This value is typically -1, but
3902 could be any arbitrary value which is not a valid char value.
3903 */
3905 {
3906  /// get a character [0,255] or std::char_traits<char>::eof().
3907  virtual std::char_traits<char>::int_type get_character() = 0;
3908  virtual ~input_adapter_protocol() = default;
3909 };
3910 
3911 /// a type to simplify interfaces
3912 using input_adapter_t = std::shared_ptr<input_adapter_protocol>;
3913 
3914 /*!
3915 Input adapter for stdio file access. This adapter read only 1 byte and do not use any
3916  buffer. This adapter is a very low level adapter.
3917 */
3919 {
3920  public:
3922  explicit file_input_adapter(std::FILE* f) noexcept
3923  : m_file(f)
3924  {}
3925 
3926  // make class move-only
3927  file_input_adapter(const file_input_adapter&) = delete;
3929  file_input_adapter& operator=(const file_input_adapter&) = delete;
3930  file_input_adapter& operator=(file_input_adapter&&) = default;
3931  ~file_input_adapter() override = default;
3932 
3933  std::char_traits<char>::int_type get_character() noexcept override
3934  {
3935  return std::fgetc(m_file);
3936  }
3937 
3938  private:
3939  /// the file pointer to read from
3940  std::FILE* m_file;
3941 };
3942 
3943 
3944 /*!
3945 Input adapter for a (caching) istream. Ignores a UFT Byte Order Mark at
3946 beginning of input. Does not support changing the underlying std::streambuf
3947 in mid-input. Maintains underlying std::istream and std::streambuf to support
3948 subsequent use of standard std::istream operations to process any input
3949 characters following those used in parsing the JSON input. Clears the
3950 std::istream flags; any input errors (e.g., EOF) will be detected by the first
3951 subsequent call for input from the std::istream.
3952 */
3954 {
3955  public:
3957  {
3958  // clear stream flags; we use underlying streambuf I/O, do not
3959  // maintain ifstream flags, except eof
3960  is.clear(is.rdstate() & std::ios::eofbit);
3961  }
3962 
3963  explicit input_stream_adapter(std::istream& i)
3964  : is(i), sb(*i.rdbuf())
3965  {}
3966 
3967  // delete because of pointer members
3968  input_stream_adapter(const input_stream_adapter&) = delete;
3969  input_stream_adapter& operator=(input_stream_adapter&) = delete;
3971  input_stream_adapter& operator=(input_stream_adapter&&) = delete;
3972 
3973  // std::istream/std::streambuf use std::char_traits<char>::to_int_type, to
3974  // ensure that std::char_traits<char>::eof() and the character 0xFF do not
3975  // end up as the same value, eg. 0xFFFFFFFF.
3976  std::char_traits<char>::int_type get_character() override
3977  {
3978  auto res = sb.sbumpc();
3979  // set eof manually, as we don't use the istream interface.
3980  if (res == EOF)
3981  {
3982  is.clear(is.rdstate() | std::ios::eofbit);
3983  }
3984  return res;
3985  }
3986 
3987  private:
3988  /// the associated input stream
3989  std::istream& is;
3990  std::streambuf& sb;
3991 };
3992 
3993 /// input adapter for buffer input
3995 {
3996  public:
3997  input_buffer_adapter(const char* b, const std::size_t l) noexcept
3998  : cursor(b), limit(b == nullptr ? nullptr : (b + l))
3999  {}
4000 
4001  // delete because of pointer members
4002  input_buffer_adapter(const input_buffer_adapter&) = delete;
4003  input_buffer_adapter& operator=(input_buffer_adapter&) = delete;
4005  input_buffer_adapter& operator=(input_buffer_adapter&&) = delete;
4006  ~input_buffer_adapter() override = default;
4007 
4008  std::char_traits<char>::int_type get_character() noexcept override
4009  {
4010  if (JSON_HEDLEY_LIKELY(cursor < limit))
4011  {
4012  assert(cursor != nullptr and limit != nullptr);
4013  return std::char_traits<char>::to_int_type(*(cursor++));
4014  }
4015 
4016  return std::char_traits<char>::eof();
4017  }
4018 
4019  private:
4020  /// pointer to the current character
4021  const char* cursor;
4022  /// pointer past the last character
4023  const char* const limit;
4024 };
4025 
4026 template<typename WideStringType, size_t T>
4028 {
4029  // UTF-32
4030  static void fill_buffer(const WideStringType& str,
4031  size_t& current_wchar,
4032  std::array<std::char_traits<char>::int_type, 4>& utf8_bytes,
4033  size_t& utf8_bytes_index,
4034  size_t& utf8_bytes_filled)
4035  {
4036  utf8_bytes_index = 0;
4037 
4038  if (current_wchar == str.size())
4039  {
4040  utf8_bytes[0] = std::char_traits<char>::eof();
4041  utf8_bytes_filled = 1;
4042  }
4043  else
4044  {
4045  // get the current character
4046  const auto wc = static_cast<unsigned int>(str[current_wchar++]);
4047 
4048  // UTF-32 to UTF-8 encoding
4049  if (wc < 0x80)
4050  {
4051  utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
4052  utf8_bytes_filled = 1;
4053  }
4054  else if (wc <= 0x7FF)
4055  {
4056  utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xC0u | ((wc >> 6u) & 0x1Fu));
4057  utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu));
4058  utf8_bytes_filled = 2;
4059  }
4060  else if (wc <= 0xFFFF)
4061  {
4062  utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xE0u | ((wc >> 12u) & 0x0Fu));
4063  utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((wc >> 6u) & 0x3Fu));
4064  utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu));
4065  utf8_bytes_filled = 3;
4066  }
4067  else if (wc <= 0x10FFFF)
4068  {
4069  utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xF0u | ((wc >> 18u) & 0x07u));
4070  utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((wc >> 12u) & 0x3Fu));
4071  utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | ((wc >> 6u) & 0x3Fu));
4072  utf8_bytes[3] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu));
4073  utf8_bytes_filled = 4;
4074  }
4075  else
4076  {
4077  // unknown character
4078  utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
4079  utf8_bytes_filled = 1;
4080  }
4081  }
4082  }
4083 };
4084 
4085 template<typename WideStringType>
4086 struct wide_string_input_helper<WideStringType, 2>
4087 {
4088  // UTF-16
4089  static void fill_buffer(const WideStringType& str,
4090  size_t& current_wchar,
4091  std::array<std::char_traits<char>::int_type, 4>& utf8_bytes,
4092  size_t& utf8_bytes_index,
4093  size_t& utf8_bytes_filled)
4094  {
4095  utf8_bytes_index = 0;
4096 
4097  if (current_wchar == str.size())
4098  {
4099  utf8_bytes[0] = std::char_traits<char>::eof();
4100  utf8_bytes_filled = 1;
4101  }
4102  else
4103  {
4104  // get the current character
4105  const auto wc = static_cast<unsigned int>(str[current_wchar++]);
4106 
4107  // UTF-16 to UTF-8 encoding
4108  if (wc < 0x80)
4109  {
4110  utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
4111  utf8_bytes_filled = 1;
4112  }
4113  else if (wc <= 0x7FF)
4114  {
4115  utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xC0u | ((wc >> 6u)));
4116  utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu));
4117  utf8_bytes_filled = 2;
4118  }
4119  else if (0xD800 > wc or wc >= 0xE000)
4120  {
4121  utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xE0u | ((wc >> 12u)));
4122  utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((wc >> 6u) & 0x3Fu));
4123  utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu));
4124  utf8_bytes_filled = 3;
4125  }
4126  else
4127  {
4128  if (current_wchar < str.size())
4129  {
4130  const auto wc2 = static_cast<unsigned int>(str[current_wchar++]);
4131  const auto charcode = 0x10000u + (((wc & 0x3FFu) << 10u) | (wc2 & 0x3FFu));
4132  utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xF0u | (charcode >> 18u));
4133  utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((charcode >> 12u) & 0x3Fu));
4134  utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | ((charcode >> 6u) & 0x3Fu));
4135  utf8_bytes[3] = static_cast<std::char_traits<char>::int_type>(0x80u | (charcode & 0x3Fu));
4136  utf8_bytes_filled = 4;
4137  }
4138  else
4139  {
4140  // unknown character
4141  ++current_wchar;
4142  utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
4143  utf8_bytes_filled = 1;
4144  }
4145  }
4146  }
4147  }
4148 };
4149 
4150 template<typename WideStringType>
4152 {
4153  public:
4154  explicit wide_string_input_adapter(const WideStringType& w) noexcept
4155  : str(w)
4156  {}
4157 
4158  std::char_traits<char>::int_type get_character() noexcept override
4159  {
4160  // check if buffer needs to be filled
4161  if (utf8_bytes_index == utf8_bytes_filled)
4162  {
4163  fill_buffer<sizeof(typename WideStringType::value_type)>();
4164 
4165  assert(utf8_bytes_filled > 0);
4166  assert(utf8_bytes_index == 0);
4167  }
4168 
4169  // use buffer
4170  assert(utf8_bytes_filled > 0);
4171  assert(utf8_bytes_index < utf8_bytes_filled);
4172  return utf8_bytes[utf8_bytes_index++];
4173  }
4174 
4175  private:
4176  template<size_t T>
4178  {
4179  wide_string_input_helper<WideStringType, T>::fill_buffer(str, current_wchar, utf8_bytes, utf8_bytes_index, utf8_bytes_filled);
4180  }
4181 
4182  /// the wstring to process
4183  const WideStringType& str;
4184 
4185  /// index of the current wchar in str
4186  std::size_t current_wchar = 0;
4187 
4188  /// a buffer for UTF-8 bytes
4189  std::array<std::char_traits<char>::int_type, 4> utf8_bytes = {{0, 0, 0, 0}};
4190 
4191  /// index to the utf8_codes array for the next valid byte
4192  std::size_t utf8_bytes_index = 0;
4193  /// number of valid bytes in the utf8_codes array
4194  std::size_t utf8_bytes_filled = 0;
4195 };
4196 
4198 {
4199  public:
4200  // native support
4203  : ia(std::make_shared<file_input_adapter>(file)) {}
4204  /// input adapter for input stream
4205  input_adapter(std::istream& i)
4206  : ia(std::make_shared<input_stream_adapter>(i)) {}
4207 
4208  /// input adapter for input stream
4209  input_adapter(std::istream&& i)
4210  : ia(std::make_shared<input_stream_adapter>(i)) {}
4211 
4212  input_adapter(const std::wstring& ws)
4213  : ia(std::make_shared<wide_string_input_adapter<std::wstring>>(ws)) {}
4214 
4215  input_adapter(const std::u16string& ws)
4216  : ia(std::make_shared<wide_string_input_adapter<std::u16string>>(ws)) {}
4217 
4218  input_adapter(const std::u32string& ws)
4219  : ia(std::make_shared<wide_string_input_adapter<std::u32string>>(ws)) {}
4220 
4221  /// input adapter for buffer
4222  template<typename CharT,
4223  typename std::enable_if<
4226  sizeof(typename std::remove_pointer<CharT>::type) == 1,
4227  int>::type = 0>
4228  input_adapter(CharT b, std::size_t l)
4229  : ia(std::make_shared<input_buffer_adapter>(reinterpret_cast<const char*>(b), l)) {}
4230 
4231  // derived support
4232 
4233  /// input adapter for string literal
4234  template<typename CharT,
4235  typename std::enable_if<
4238  sizeof(typename std::remove_pointer<CharT>::type) == 1,
4239  int>::type = 0>
4240  input_adapter(CharT b)
4241  : input_adapter(reinterpret_cast<const char*>(b),
4242  std::strlen(reinterpret_cast<const char*>(b))) {}
4243 
4244  /// input adapter for iterator range with contiguous storage
4245  template<class IteratorType,
4246  typename std::enable_if<
4247  std::is_same<typename iterator_traits<IteratorType>::iterator_category, std::random_access_iterator_tag>::value,
4248  int>::type = 0>
4249  input_adapter(IteratorType first, IteratorType last)
4250  {
4251 #ifndef NDEBUG
4252  // assertion to check that the iterator range is indeed contiguous,
4253  // see http://stackoverflow.com/a/35008842/266378 for more discussion
4254  const auto is_contiguous = std::accumulate(
4255  first, last, std::pair<bool, int>(true, 0),
4256  [&first](std::pair<bool, int> res, decltype(*first) val)
4257  {
4258  res.first &= (val == *(std::next(std::addressof(*first), res.second++)));
4259  return res;
4260  }).first;
4261  assert(is_contiguous);
4262 #endif
4263 
4264  // assertion to check that each element is 1 byte long
4265  static_assert(
4266  sizeof(typename iterator_traits<IteratorType>::value_type) == 1,
4267  "each element in the iterator range must have the size of 1 byte");
4268 
4269  const auto len = static_cast<size_t>(std::distance(first, last));
4270  if (JSON_HEDLEY_LIKELY(len > 0))
4271  {
4272  // there is at least one element: use the address of first
4273  ia = std::make_shared<input_buffer_adapter>(reinterpret_cast<const char*>(&(*first)), len);
4274  }
4275  else
4276  {
4277  // the address of first cannot be used: use nullptr
4278  ia = std::make_shared<input_buffer_adapter>(nullptr, len);
4279  }
4280  }
4281 
4282  /// input adapter for array
4283  template<class T, std::size_t N>
4284  input_adapter(T (&array)[N])
4286 
4287  /// input adapter for contiguous container
4288  template<class ContiguousContainer, typename
4290  std::is_base_of<std::random_access_iterator_tag, typename iterator_traits<decltype(std::begin(std::declval<ContiguousContainer const>()))>::iterator_category>::value,
4291  int>::type = 0>
4292  input_adapter(const ContiguousContainer& c)
4293  : input_adapter(std::begin(c), std::end(c)) {}
4294 
4295  operator input_adapter_t()
4296  {
4297  return ia;
4298  }
4299 
4300  private:
4301  /// the actual adapter
4302  input_adapter_t ia = nullptr;
4303 };
4304 } // namespace detail
4305 } // namespace nlohmann
4306 
4307 // #include <nlohmann/detail/input/json_sax.hpp>
4308 
4309 
4310 #include <cassert> // assert
4311 #include <cstddef>
4312 #include <string> // string
4313 #include <utility> // move
4314 #include <vector> // vector
4315 
4316 // #include <nlohmann/detail/exceptions.hpp>
4317 
4318 // #include <nlohmann/detail/macro_scope.hpp>
4319 
4320 
4321 namespace nlohmann
4322 {
4323 
4324 /*!
4325 @brief SAX interface
4326 
4327 This class describes the SAX interface used by @ref nlohmann::json::sax_parse.
4328 Each function is called in different situations while the input is parsed. The
4329 boolean return value informs the parser whether to continue processing the
4330 input.
4331 */
4332 template<typename BasicJsonType>
4333 struct json_sax
4334 {
4335  /// type for (signed) integers
4336  using number_integer_t = typename BasicJsonType::number_integer_t;
4337  /// type for unsigned integers
4338  using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
4339  /// type for floating-point numbers
4340  using number_float_t = typename BasicJsonType::number_float_t;
4341  /// type for strings
4342  using string_t = typename BasicJsonType::string_t;
4343 
4344  /*!
4345  @brief a null value was read
4346  @return whether parsing should proceed
4347  */
4348  virtual bool null() = 0;
4349 
4350  /*!
4351  @brief a boolean value was read
4352  @param[in] val boolean value
4353  @return whether parsing should proceed
4354  */
4355  virtual bool boolean(bool val) = 0;
4356 
4357  /*!
4358  @brief an integer number was read
4359  @param[in] val integer value
4360  @return whether parsing should proceed
4361  */
4362  virtual bool number_integer(number_integer_t val) = 0;
4363 
4364  /*!
4365  @brief an unsigned integer number was read
4366  @param[in] val unsigned integer value
4367  @return whether parsing should proceed
4368  */
4369  virtual bool number_unsigned(number_unsigned_t val) = 0;
4370 
4371  /*!
4372  @brief an floating-point number was read
4373  @param[in] val floating-point value
4374  @param[in] s raw token value
4375  @return whether parsing should proceed
4376  */
4377  virtual bool number_float(number_float_t val, const string_t& s) = 0;
4378 
4379  /*!
4380  @brief a string was read
4381  @param[in] val string value
4382  @return whether parsing should proceed
4383  @note It is safe to move the passed string.
4384  */
4385  virtual bool string(string_t& val) = 0;
4386 
4387  /*!
4388  @brief the beginning of an object was read
4389  @param[in] elements number of object elements or -1 if unknown
4390  @return whether parsing should proceed
4391  @note binary formats may report the number of elements
4392  */
4393  virtual bool start_object(std::size_t elements) = 0;
4394 
4395  /*!
4396  @brief an object key was read
4397  @param[in] val object key
4398  @return whether parsing should proceed
4399  @note It is safe to move the passed string.
4400  */
4401  virtual bool key(string_t& val) = 0;
4402 
4403  /*!
4404  @brief the end of an object was read
4405  @return whether parsing should proceed
4406  */
4407  virtual bool end_object() = 0;
4408 
4409  /*!
4410  @brief the beginning of an array was read
4411  @param[in] elements number of array elements or -1 if unknown
4412  @return whether parsing should proceed
4413  @note binary formats may report the number of elements
4414  */
4415  virtual bool start_array(std::size_t elements) = 0;
4416 
4417  /*!
4418  @brief the end of an array was read
4419  @return whether parsing should proceed
4420  */
4421  virtual bool end_array() = 0;
4422 
4423  /*!
4424  @brief a parse error occurred
4425  @param[in] position the position in the input where the error occurs
4426  @param[in] last_token the last read token
4427  @param[in] ex an exception object describing the error
4428  @return whether parsing should proceed (must return false)
4429  */
4430  virtual bool parse_error(std::size_t position,
4431  const std::string& last_token,
4432  const detail::exception& ex) = 0;
4433 
4434  virtual ~json_sax() = default;
4435 };
4436 
4437 
4438 namespace detail
4439 {
4440 /*!
4441 @brief SAX implementation to create a JSON value from SAX events
4442 
4443 This class implements the @ref json_sax interface and processes the SAX events
4444 to create a JSON value which makes it basically a DOM parser. The structure or
4445 hierarchy of the JSON value is managed by the stack `ref_stack` which contains
4446 a pointer to the respective array or object for each recursion depth.
4447 
4448 After successful parsing, the value that is passed by reference to the
4449 constructor contains the parsed value.
4450 
4451 @tparam BasicJsonType the JSON type
4452 */
4453 template<typename BasicJsonType>
4455 {
4456  public:
4457  using number_integer_t = typename BasicJsonType::number_integer_t;
4458  using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
4459  using number_float_t = typename BasicJsonType::number_float_t;
4460  using string_t = typename BasicJsonType::string_t;
4461 
4462  /*!
4463  @param[in, out] r reference to a JSON value that is manipulated while
4464  parsing
4465  @param[in] allow_exceptions_ whether parse errors yield exceptions
4466  */
4467  explicit json_sax_dom_parser(BasicJsonType& r, const bool allow_exceptions_ = true)
4468  : root(r), allow_exceptions(allow_exceptions_)
4469  {}
4470 
4471  // make class move-only
4472  json_sax_dom_parser(const json_sax_dom_parser&) = delete;
4474  json_sax_dom_parser& operator=(const json_sax_dom_parser&) = delete;
4475  json_sax_dom_parser& operator=(json_sax_dom_parser&&) = default;
4476  ~json_sax_dom_parser() = default;
4477 
4478  bool null()
4479  {
4480  handle_value(nullptr);
4481  return true;
4482  }
4483 
4484  bool boolean(bool val)
4485  {
4486  handle_value(val);
4487  return true;
4488  }
4489 
4491  {
4492  handle_value(val);
4493  return true;
4494  }
4495 
4497  {
4498  handle_value(val);
4499  return true;
4500  }
4501 
4502  bool number_float(number_float_t val, const string_t& /*unused*/)
4503  {
4504  handle_value(val);
4505  return true;
4506  }
4507 
4508  bool string(string_t& val)
4509  {
4510  handle_value(val);
4511  return true;
4512  }
4513 
4514  bool start_object(std::size_t len)
4515  {
4516  ref_stack.push_back(handle_value(BasicJsonType::value_t::object));
4517 
4518  if (JSON_HEDLEY_UNLIKELY(len != std::size_t(-1) and len > ref_stack.back()->max_size()))
4519  {
4520  JSON_THROW(out_of_range::create(408,
4521  "excessive object size: " + std::to_string(len)));
4522  }
4523 
4524  return true;
4525  }
4526 
4527  bool key(string_t& val)
4528  {
4529  // add null at given key and store the reference for later
4530  object_element = &(ref_stack.back()->m_value.object->operator[](val));
4531  return true;
4532  }
4533 
4534  bool end_object()
4535  {
4536  ref_stack.pop_back();
4537  return true;
4538  }
4539 
4540  bool start_array(std::size_t len)
4541  {
4542  ref_stack.push_back(handle_value(BasicJsonType::value_t::array));
4543 
4544  if (JSON_HEDLEY_UNLIKELY(len != std::size_t(-1) and len > ref_stack.back()->max_size()))
4545  {
4546  JSON_THROW(out_of_range::create(408,
4547  "excessive array size: " + std::to_string(len)));
4548  }
4549 
4550  return true;
4551  }
4552 
4553  bool end_array()
4554  {
4555  ref_stack.pop_back();
4556  return true;
4557  }
4558 
4559  bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/,
4560  const detail::exception& ex)
4561  {
4562  errored = true;
4563  if (allow_exceptions)
4564  {
4565  // determine the proper exception type from the id
4566  switch ((ex.id / 100) % 100)
4567  {
4568  case 1:
4569  JSON_THROW(*static_cast<const detail::parse_error*>(&ex));
4570  case 4:
4571  JSON_THROW(*static_cast<const detail::out_of_range*>(&ex));
4572  // LCOV_EXCL_START
4573  case 2:
4574  JSON_THROW(*static_cast<const detail::invalid_iterator*>(&ex));
4575  case 3:
4576  JSON_THROW(*static_cast<const detail::type_error*>(&ex));
4577  case 5:
4578  JSON_THROW(*static_cast<const detail::other_error*>(&ex));
4579  default:
4580  assert(false);
4581  // LCOV_EXCL_STOP
4582  }
4583  }
4584  return false;
4585  }
4586 
4587  constexpr bool is_errored() const
4588  {
4589  return errored;
4590  }
4591 
4592  private:
4593  /*!
4594  @invariant If the ref stack is empty, then the passed value will be the new
4595  root.
4596  @invariant If the ref stack contains a value, then it is an array or an
4597  object to which we can add elements
4598  */
4599  template<typename Value>
4601  BasicJsonType* handle_value(Value&& v)
4602  {
4603  if (ref_stack.empty())
4604  {
4605  root = BasicJsonType(std::forward<Value>(v));
4606  return &root;
4607  }
4608 
4609  assert(ref_stack.back()->is_array() or ref_stack.back()->is_object());
4610 
4611  if (ref_stack.back()->is_array())
4612  {
4613  ref_stack.back()->m_value.array->emplace_back(std::forward<Value>(v));
4614  return &(ref_stack.back()->m_value.array->back());
4615  }
4616 
4617  assert(ref_stack.back()->is_object());
4618  assert(object_element);
4619  *object_element = BasicJsonType(std::forward<Value>(v));
4620  return object_element;
4621  }
4622 
4623  /// the parsed JSON value
4624  BasicJsonType& root;
4625  /// stack to model hierarchy of values
4626  std::vector<BasicJsonType*> ref_stack {};
4627  /// helper to hold the reference for the next object element
4628  BasicJsonType* object_element = nullptr;
4629  /// whether a syntax error occurred
4630  bool errored = false;
4631  /// whether to throw exceptions in case of errors
4632  const bool allow_exceptions = true;
4633 };
4634 
4635 template<typename BasicJsonType>
4637 {
4638  public:
4639  using number_integer_t = typename BasicJsonType::number_integer_t;
4640  using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
4641  using number_float_t = typename BasicJsonType::number_float_t;
4642  using string_t = typename BasicJsonType::string_t;
4643  using parser_callback_t = typename BasicJsonType::parser_callback_t;
4644  using parse_event_t = typename BasicJsonType::parse_event_t;
4645 
4647  const parser_callback_t cb,
4648  const bool allow_exceptions_ = true)
4649  : root(r), callback(cb), allow_exceptions(allow_exceptions_)
4650  {
4651  keep_stack.push_back(true);
4652  }
4653 
4654  // make class move-only
4657  json_sax_dom_callback_parser& operator=(const json_sax_dom_callback_parser&) = delete;
4659  ~json_sax_dom_callback_parser() = default;
4660 
4661  bool null()
4662  {
4663  handle_value(nullptr);
4664  return true;
4665  }
4666 
4667  bool boolean(bool val)
4668  {
4669  handle_value(val);
4670  return true;
4671  }
4672 
4674  {
4675  handle_value(val);
4676  return true;
4677  }
4678 
4680  {
4681  handle_value(val);
4682  return true;
4683  }
4684 
4685  bool number_float(number_float_t val, const string_t& /*unused*/)
4686  {
4687  handle_value(val);
4688  return true;
4689  }
4690 
4691  bool string(string_t& val)
4692  {
4693  handle_value(val);
4694  return true;
4695  }
4696 
4697  bool start_object(std::size_t len)
4698  {
4699  // check callback for object start
4700  const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::object_start, discarded);
4701  keep_stack.push_back(keep);
4702 
4703  auto val = handle_value(BasicJsonType::value_t::object, true);
4704  ref_stack.push_back(val.second);
4705 
4706  // check object limit
4707  if (ref_stack.back() and JSON_HEDLEY_UNLIKELY(len != std::size_t(-1) and len > ref_stack.back()->max_size()))
4708  {
4709  JSON_THROW(out_of_range::create(408, "excessive object size: " + std::to_string(len)));
4710  }
4711 
4712  return true;
4713  }
4714 
4715  bool key(string_t& val)
4716  {
4717  BasicJsonType k = BasicJsonType(val);
4718 
4719  // check callback for key
4720  const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::key, k);
4721  key_keep_stack.push_back(keep);
4722 
4723  // add discarded value at given key and store the reference for later
4724  if (keep and ref_stack.back())
4725  {
4726  object_element = &(ref_stack.back()->m_value.object->operator[](val) = discarded);
4727  }
4728 
4729  return true;
4730  }
4731 
4732  bool end_object()
4733  {
4734  if (ref_stack.back() and not callback(static_cast<int>(ref_stack.size()) - 1, parse_event_t::object_end, *ref_stack.back()))
4735  {
4736  // discard object
4737  *ref_stack.back() = discarded;
4738  }
4739 
4740  assert(not ref_stack.empty());
4741  assert(not keep_stack.empty());
4742  ref_stack.pop_back();
4743  keep_stack.pop_back();
4744 
4745  if (not ref_stack.empty() and ref_stack.back() and ref_stack.back()->is_object())
4746  {
4747  // remove discarded value
4748  for (auto it = ref_stack.back()->begin(); it != ref_stack.back()->end(); ++it)
4749  {
4750  if (it->is_discarded())
4751  {
4752  ref_stack.back()->erase(it);
4753  break;
4754  }
4755  }
4756  }
4757 
4758  return true;
4759  }
4760 
4761  bool start_array(std::size_t len)
4762  {
4763  const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::array_start, discarded);
4764  keep_stack.push_back(keep);
4765 
4766  auto val = handle_value(BasicJsonType::value_t::array, true);
4767  ref_stack.push_back(val.second);
4768 
4769  // check array limit
4770  if (ref_stack.back() and JSON_HEDLEY_UNLIKELY(len != std::size_t(-1) and len > ref_stack.back()->max_size()))
4771  {
4772  JSON_THROW(out_of_range::create(408, "excessive array size: " + std::to_string(len)));
4773  }
4774 
4775  return true;
4776  }
4777 
4778  bool end_array()
4779  {
4780  bool keep = true;
4781 
4782  if (ref_stack.back())
4783  {
4784  keep = callback(static_cast<int>(ref_stack.size()) - 1, parse_event_t::array_end, *ref_stack.back());
4785  if (not keep)
4786  {
4787  // discard array
4788  *ref_stack.back() = discarded;
4789  }
4790  }
4791 
4792  assert(not ref_stack.empty());
4793  assert(not keep_stack.empty());
4794  ref_stack.pop_back();
4795  keep_stack.pop_back();
4796 
4797  // remove discarded value
4798  if (not keep and not ref_stack.empty() and ref_stack.back()->is_array())
4799  {
4800  ref_stack.back()->m_value.array->pop_back();
4801  }
4802 
4803  return true;
4804  }
4805 
4806  bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/,
4807  const detail::exception& ex)
4808  {
4809  errored = true;
4810  if (allow_exceptions)
4811  {
4812  // determine the proper exception type from the id
4813  switch ((ex.id / 100) % 100)
4814  {
4815  case 1:
4816  JSON_THROW(*static_cast<const detail::parse_error*>(&ex));
4817  case 4:
4818  JSON_THROW(*static_cast<const detail::out_of_range*>(&ex));
4819  // LCOV_EXCL_START
4820  case 2:
4821  JSON_THROW(*static_cast<const detail::invalid_iterator*>(&ex));
4822  case 3:
4823  JSON_THROW(*static_cast<const detail::type_error*>(&ex));
4824  case 5:
4825  JSON_THROW(*static_cast<const detail::other_error*>(&ex));
4826  default:
4827  assert(false);
4828  // LCOV_EXCL_STOP
4829  }
4830  }
4831  return false;
4832  }
4833 
4834  constexpr bool is_errored() const
4835  {
4836  return errored;
4837  }
4838 
4839  private:
4840  /*!
4841  @param[in] v value to add to the JSON value we build during parsing
4842  @param[in] skip_callback whether we should skip calling the callback
4843  function; this is required after start_array() and
4844  start_object() SAX events, because otherwise we would call the
4845  callback function with an empty array or object, respectively.
4846 
4847  @invariant If the ref stack is empty, then the passed value will be the new
4848  root.
4849  @invariant If the ref stack contains a value, then it is an array or an
4850  object to which we can add elements
4851 
4852  @return pair of boolean (whether value should be kept) and pointer (to the
4853  passed value in the ref_stack hierarchy; nullptr if not kept)
4854  */
4855  template<typename Value>
4856  std::pair<bool, BasicJsonType*> handle_value(Value&& v, const bool skip_callback = false)
4857  {
4858  assert(not keep_stack.empty());
4859 
4860  // do not handle this value if we know it would be added to a discarded
4861  // container
4862  if (not keep_stack.back())
4863  {
4864  return {false, nullptr};
4865  }
4866 
4867  // create value
4868  auto value = BasicJsonType(std::forward<Value>(v));
4869 
4870  // check callback
4871  const bool keep = skip_callback or callback(static_cast<int>(ref_stack.size()), parse_event_t::value, value);
4872 
4873  // do not handle this value if we just learnt it shall be discarded
4874  if (not keep)
4875  {
4876  return {false, nullptr};
4877  }
4878 
4879  if (ref_stack.empty())
4880  {
4881  root = std::move(value);
4882  return {true, &root};
4883  }
4884 
4885  // skip this value if we already decided to skip the parent
4886  // (https://github.com/nlohmann/json/issues/971#issuecomment-413678360)
4887  if (not ref_stack.back())
4888  {
4889  return {false, nullptr};
4890  }
4891 
4892  // we now only expect arrays and objects
4893  assert(ref_stack.back()->is_array() or ref_stack.back()->is_object());
4894 
4895  // array
4896  if (ref_stack.back()->is_array())
4897  {
4898  ref_stack.back()->m_value.array->push_back(std::move(value));
4899  return {true, &(ref_stack.back()->m_value.array->back())};
4900  }
4901 
4902  // object
4903  assert(ref_stack.back()->is_object());
4904  // check if we should store an element for the current key
4905  assert(not key_keep_stack.empty());
4906  const bool store_element = key_keep_stack.back();
4907  key_keep_stack.pop_back();
4908 
4909  if (not store_element)
4910  {
4911  return {false, nullptr};
4912  }
4913 
4914  assert(object_element);
4915  *object_element = std::move(value);
4916  return {true, object_element};
4917  }
4918 
4919  /// the parsed JSON value
4920  BasicJsonType& root;
4921  /// stack to model hierarchy of values
4922  std::vector<BasicJsonType*> ref_stack {};
4923  /// stack to manage which values to keep
4924  std::vector<bool> keep_stack {};
4925  /// stack to manage which object keys to keep
4926  std::vector<bool> key_keep_stack {};
4927  /// helper to hold the reference for the next object element
4928  BasicJsonType* object_element = nullptr;
4929  /// whether a syntax error occurred
4930  bool errored = false;
4931  /// callback function
4932  const parser_callback_t callback = nullptr;
4933  /// whether to throw exceptions in case of errors
4934  const bool allow_exceptions = true;
4935  /// a discarded value for the callback
4936  BasicJsonType discarded = BasicJsonType::value_t::discarded;
4937 };
4938 
4939 template<typename BasicJsonType>
4941 {
4942  public:
4943  using number_integer_t = typename BasicJsonType::number_integer_t;
4944  using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
4945  using number_float_t = typename BasicJsonType::number_float_t;
4946  using string_t = typename BasicJsonType::string_t;
4947 
4948  bool null()
4949  {
4950  return true;
4951  }
4952 
4953  bool boolean(bool /*unused*/)
4954  {
4955  return true;
4956  }
4957 
4959  {
4960  return true;
4961  }
4962 
4964  {
4965  return true;
4966  }
4967 
4968  bool number_float(number_float_t /*unused*/, const string_t& /*unused*/)
4969  {
4970  return true;
4971  }
4972 
4973  bool string(string_t& /*unused*/)
4974  {
4975  return true;
4976  }
4977 
4978  bool start_object(std::size_t /*unused*/ = std::size_t(-1))
4979  {
4980  return true;
4981  }
4982 
4983  bool key(string_t& /*unused*/)
4984  {
4985  return true;
4986  }
4987 
4988  bool end_object()
4989  {
4990  return true;
4991  }
4992 
4993  bool start_array(std::size_t /*unused*/ = std::size_t(-1))
4994  {
4995  return true;
4996  }
4997 
4998  bool end_array()
4999  {
5000  return true;
5001  }
5002 
5003  bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/, const detail::exception& /*unused*/)
5004  {
5005  return false;
5006  }
5007 };
5008 } // namespace detail
5009 
5010 } // namespace nlohmann
5011 
5012 // #include <nlohmann/detail/macro_scope.hpp>
5013 
5014 // #include <nlohmann/detail/meta/is_sax.hpp>
5015 
5016 
5017 #include <cstdint> // size_t
5018 #include <utility> // declval
5019 #include <string> // string
5020 
5021 // #include <nlohmann/detail/meta/detected.hpp>
5022 
5023 // #include <nlohmann/detail/meta/type_traits.hpp>
5024 
5025 
5026 namespace nlohmann
5027 {
5028 namespace detail
5029 {
5030 template <typename T>
5031 using null_function_t = decltype(std::declval<T&>().null());
5032 
5033 template <typename T>
5034 using boolean_function_t =
5035  decltype(std::declval<T&>().boolean(std::declval<bool>()));
5036 
5037 template <typename T, typename Integer>
5039  decltype(std::declval<T&>().number_integer(std::declval<Integer>()));
5040 
5041 template <typename T, typename Unsigned>
5043  decltype(std::declval<T&>().number_unsigned(std::declval<Unsigned>()));
5044 
5045 template <typename T, typename Float, typename String>
5046 using number_float_function_t = decltype(std::declval<T&>().number_float(
5047  std::declval<Float>(), std::declval<const String&>()));
5048 
5049 template <typename T, typename String>
5050 using string_function_t =
5051  decltype(std::declval<T&>().string(std::declval<String&>()));
5052 
5053 template <typename T>
5055  decltype(std::declval<T&>().start_object(std::declval<std::size_t>()));
5056 
5057 template <typename T, typename String>
5058 using key_function_t =
5059  decltype(std::declval<T&>().key(std::declval<String&>()));
5060 
5061 template <typename T>
5062 using end_object_function_t = decltype(std::declval<T&>().end_object());
5063 
5064 template <typename T>
5065 using start_array_function_t =
5066  decltype(std::declval<T&>().start_array(std::declval<std::size_t>()));
5067 
5068 template <typename T>
5069 using end_array_function_t = decltype(std::declval<T&>().end_array());
5070 
5071 template <typename T, typename Exception>
5072 using parse_error_function_t = decltype(std::declval<T&>().parse_error(
5073  std::declval<std::size_t>(), std::declval<const std::string&>(),
5074  std::declval<const Exception&>()));
5075 
5076 template <typename SAX, typename BasicJsonType>
5077 struct is_sax
5078 {
5079  private:
5081  "BasicJsonType must be of type basic_json<...>");
5082 
5083  using number_integer_t = typename BasicJsonType::number_integer_t;
5084  using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
5085  using number_float_t = typename BasicJsonType::number_float_t;
5086  using string_t = typename BasicJsonType::string_t;
5087  using exception_t = typename BasicJsonType::exception;
5088 
5089  public:
5090  static constexpr bool value =
5098  string_t>::value &&
5106 };
5107 
5108 template <typename SAX, typename BasicJsonType>
5110 {
5111  private:
5113  "BasicJsonType must be of type basic_json<...>");
5114 
5115  using number_integer_t = typename BasicJsonType::number_integer_t;
5116  using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
5117  using number_float_t = typename BasicJsonType::number_float_t;
5118  using string_t = typename BasicJsonType::string_t;
5119  using exception_t = typename BasicJsonType::exception;
5120 
5121  public:
5123  "Missing/invalid function: bool null()");
5125  "Missing/invalid function: bool boolean(bool)");
5127  "Missing/invalid function: bool boolean(bool)");
5128  static_assert(
5131  "Missing/invalid function: bool number_integer(number_integer_t)");
5132  static_assert(
5133  is_detected_exact<bool, number_unsigned_function_t, SAX,
5135  "Missing/invalid function: bool number_unsigned(number_unsigned_t)");
5136  static_assert(is_detected_exact<bool, number_float_function_t, SAX,
5138  "Missing/invalid function: bool number_float(number_float_t, const string_t&)");
5139  static_assert(
5141  "Missing/invalid function: bool string(string_t&)");
5143  "Missing/invalid function: bool start_object(std::size_t)");
5145  "Missing/invalid function: bool key(string_t&)");
5147  "Missing/invalid function: bool end_object()");
5149  "Missing/invalid function: bool start_array(std::size_t)");
5151  "Missing/invalid function: bool end_array()");
5152  static_assert(
5154  "Missing/invalid function: bool parse_error(std::size_t, const "
5155  "std::string&, const exception&)");
5156 };
5157 } // namespace detail
5158 } // namespace nlohmann
5159 
5160 // #include <nlohmann/detail/value_t.hpp>
5161 
5162 
5163 namespace nlohmann
5164 {
5165 namespace detail
5166 {
5167 ///////////////////
5168 // binary reader //
5169 ///////////////////
5170 
5171 /*!
5172 @brief deserialization of CBOR, MessagePack, and UBJSON values
5173 */
5174 template<typename BasicJsonType, typename SAX = json_sax_dom_parser<BasicJsonType>>
5176 {
5177  using number_integer_t = typename BasicJsonType::number_integer_t;
5178  using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
5179  using number_float_t = typename BasicJsonType::number_float_t;
5180  using string_t = typename BasicJsonType::string_t;
5181  using json_sax_t = SAX;
5182 
5183  public:
5184  /*!
5185  @brief create a binary reader
5186 
5187  @param[in] adapter input adapter to read from
5188  */
5189  explicit binary_reader(input_adapter_t adapter) : ia(std::move(adapter))
5190  {
5192  assert(ia);
5193  }
5194 
5195  // make class move-only
5196  binary_reader(const binary_reader&) = delete;
5197  binary_reader(binary_reader&&) = default;
5198  binary_reader& operator=(const binary_reader&) = delete;
5199  binary_reader& operator=(binary_reader&&) = default;
5200  ~binary_reader() = default;
5201 
5202  /*!
5203  @param[in] format the binary format to parse
5204  @param[in] sax_ a SAX event processor
5205  @param[in] strict whether to expect the input to be consumed completed
5206 
5207  @return
5208  */
5211  json_sax_t* sax_,
5212  const bool strict = true)
5213  {
5214  sax = sax_;
5215  bool result = false;
5216 
5217  switch (format)
5218  {
5219  case input_format_t::bson:
5220  result = parse_bson_internal();
5221  break;
5222 
5223  case input_format_t::cbor:
5224  result = parse_cbor_internal();
5225  break;
5226 
5227  case input_format_t::msgpack:
5228  result = parse_msgpack_internal();
5229  break;
5230 
5231  case input_format_t::ubjson:
5232  result = parse_ubjson_internal();
5233  break;
5234 
5235  default: // LCOV_EXCL_LINE
5236  assert(false); // LCOV_EXCL_LINE
5237  }
5238 
5239  // strict mode: next byte must be EOF
5240  if (result and strict)
5241  {
5242  if (format == input_format_t::ubjson)
5243  {
5244  get_ignore_noop();
5245  }
5246  else
5247  {
5248  get();
5249  }
5250 
5251  if (JSON_HEDLEY_UNLIKELY(current != std::char_traits<char>::eof()))
5252  {
5253  return sax->parse_error(chars_read, get_token_string(),
5254  parse_error::create(110, chars_read, exception_message(format, "expected end of input; last byte: 0x" + get_token_string(), "value")));
5255  }
5256  }
5257 
5258  return result;
5259  }
5260 
5261  /*!
5262  @brief determine system byte order
5263 
5264  @return true if and only if system's byte order is little endian
5265 
5266  @note from http://stackoverflow.com/a/1001328/266378
5267  */
5268  static constexpr bool little_endianess(int num = 1) noexcept
5269  {
5270  return *reinterpret_cast<char*>(&num) == 1;
5271  }
5272 
5273  private:
5274  //////////
5275  // BSON //
5276  //////////
5277 
5278  /*!
5279  @brief Reads in a BSON-object and passes it to the SAX-parser.
5280  @return whether a valid BSON-value was passed to the SAX parser
5281  */
5283  {
5284  std::int32_t document_size;
5285  get_number<std::int32_t, true>(input_format_t::bson, document_size);
5286 
5287  if (JSON_HEDLEY_UNLIKELY(not sax->start_object(std::size_t(-1))))
5288  {
5289  return false;
5290  }
5291 
5292  if (JSON_HEDLEY_UNLIKELY(not parse_bson_element_list(/*is_array*/false)))
5293  {
5294  return false;
5295  }
5296 
5297  return sax->end_object();
5298  }
5299 
5300  /*!
5301  @brief Parses a C-style string from the BSON input.
5302  @param[in, out] result A reference to the string variable where the read
5303  string is to be stored.
5304  @return `true` if the \x00-byte indicating the end of the string was
5305  encountered before the EOF; false` indicates an unexpected EOF.
5306  */
5307  bool get_bson_cstr(string_t& result)
5308  {
5309  auto out = std::back_inserter(result);
5310  while (true)
5311  {
5312  get();
5313  if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::bson, "cstring")))
5314  {
5315  return false;
5316  }
5317  if (current == 0x00)
5318  {
5319  return true;
5320  }
5321  *out++ = static_cast<char>(current);
5322  }
5323 
5324  return true;
5325  }
5326 
5327  /*!
5328  @brief Parses a zero-terminated string of length @a len from the BSON
5329  input.
5330  @param[in] len The length (including the zero-byte at the end) of the
5331  string to be read.
5332  @param[in, out] result A reference to the string variable where the read
5333  string is to be stored.
5334  @tparam NumberType The type of the length @a len
5335  @pre len >= 1
5336  @return `true` if the string was successfully parsed
5337  */
5338  template<typename NumberType>
5339  bool get_bson_string(const NumberType len, string_t& result)
5340  {
5341  if (JSON_HEDLEY_UNLIKELY(len < 1))
5342  {
5343  auto last_token = get_token_string();
5344  return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::bson, "string length must be at least 1, is " + std::to_string(len), "string")));
5345  }
5346 
5347  return get_string(input_format_t::bson, len - static_cast<NumberType>(1), result) and get() != std::char_traits<char>::eof();
5348  }
5349 
5350  /*!
5351  @brief Read a BSON document element of the given @a element_type.
5352  @param[in] element_type The BSON element type, c.f. http://bsonspec.org/spec.html
5353  @param[in] element_type_parse_position The position in the input stream,
5354  where the `element_type` was read.
5355  @warning Not all BSON element types are supported yet. An unsupported
5356  @a element_type will give rise to a parse_error.114:
5357  Unsupported BSON record type 0x...
5358  @return whether a valid BSON-object/array was passed to the SAX parser
5359  */
5360  bool parse_bson_element_internal(const int element_type,
5361  const std::size_t element_type_parse_position)
5362  {
5363  switch (element_type)
5364  {
5365  case 0x01: // double
5366  {
5367  double number;
5368  return get_number<double, true>(input_format_t::bson, number) and sax->number_float(static_cast<number_float_t>(number), "");
5369  }
5370 
5371  case 0x02: // string
5372  {
5373  std::int32_t len;
5374  string_t value;
5375  return get_number<std::int32_t, true>(input_format_t::bson, len) and get_bson_string(len, value) and sax->string(value);
5376  }
5377 
5378  case 0x03: // object
5379  {
5380  return parse_bson_internal();
5381  }
5382 
5383  case 0x04: // array
5384  {
5385  return parse_bson_array();
5386  }
5387 
5388  case 0x08: // boolean
5389  {
5390  return sax->boolean(get() != 0);
5391  }
5392 
5393  case 0x0A: // null
5394  {
5395  return sax->null();
5396  }
5397 
5398  case 0x10: // int32
5399  {
5400  std::int32_t value;
5401  return get_number<std::int32_t, true>(input_format_t::bson, value) and sax->number_integer(value);
5402  }
5403 
5404  case 0x12: // int64
5405  {
5406  std::int64_t value;
5407  return get_number<std::int64_t, true>(input_format_t::bson, value) and sax->number_integer(value);
5408  }
5409 
5410  default: // anything else not supported (yet)
5411  {
5412  std::array<char, 3> cr{{}};
5413  (std::snprintf)(cr.data(), cr.size(), "%.2hhX", static_cast<unsigned char>(element_type));
5414  return sax->parse_error(element_type_parse_position, std::string(cr.data()), parse_error::create(114, element_type_parse_position, "Unsupported BSON record type 0x" + std::string(cr.data())));
5415  }
5416  }
5417  }
5418 
5419  /*!
5420  @brief Read a BSON element list (as specified in the BSON-spec)
5421 
5422  The same binary layout is used for objects and arrays, hence it must be
5423  indicated with the argument @a is_array which one is expected
5424  (true --> array, false --> object).
5425 
5426  @param[in] is_array Determines if the element list being read is to be
5427  treated as an object (@a is_array == false), or as an
5428  array (@a is_array == true).
5429  @return whether a valid BSON-object/array was passed to the SAX parser
5430  */
5431  bool parse_bson_element_list(const bool is_array)
5432  {
5433  string_t key;
5434  while (int element_type = get())
5435  {
5436  if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::bson, "element list")))
5437  {
5438  return false;
5439  }
5440 
5441  const std::size_t element_type_parse_position = chars_read;
5442  if (JSON_HEDLEY_UNLIKELY(not get_bson_cstr(key)))
5443  {
5444  return false;
5445  }
5446 
5447  if (not is_array and not sax->key(key))
5448  {
5449  return false;
5450  }
5451 
5452  if (JSON_HEDLEY_UNLIKELY(not parse_bson_element_internal(element_type, element_type_parse_position)))
5453  {
5454  return false;
5455  }
5456 
5457  // get_bson_cstr only appends
5458  key.clear();
5459  }
5460 
5461  return true;
5462  }
5463 
5464  /*!
5465  @brief Reads an array from the BSON input and passes it to the SAX-parser.
5466  @return whether a valid BSON-array was passed to the SAX parser
5467  */
5469  {
5470  std::int32_t document_size;
5471  get_number<std::int32_t, true>(input_format_t::bson, document_size);
5472 
5473  if (JSON_HEDLEY_UNLIKELY(not sax->start_array(std::size_t(-1))))
5474  {
5475  return false;
5476  }
5477 
5478  if (JSON_HEDLEY_UNLIKELY(not parse_bson_element_list(/*is_array*/true)))
5479  {
5480  return false;
5481  }
5482 
5483  return sax->end_array();
5484  }
5485 
5486  //////////
5487  // CBOR //
5488  //////////
5489 
5490  /*!
5491  @param[in] get_char whether a new character should be retrieved from the
5492  input (true, default) or whether the last read
5493  character should be considered instead
5494 
5495  @return whether a valid CBOR value was passed to the SAX parser
5496  */
5497  bool parse_cbor_internal(const bool get_char = true)
5498  {
5499  switch (get_char ? get() : current)
5500  {
5501  // EOF
5502  case std::char_traits<char>::eof():
5503  return unexpect_eof(input_format_t::cbor, "value");
5504 
5505  // Integer 0x00..0x17 (0..23)
5506  case 0x00:
5507  case 0x01:
5508  case 0x02:
5509  case 0x03:
5510  case 0x04:
5511  case 0x05:
5512  case 0x06:
5513  case 0x07:
5514  case 0x08:
5515  case 0x09:
5516  case 0x0A:
5517  case 0x0B:
5518  case 0x0C:
5519  case 0x0D:
5520  case 0x0E:
5521  case 0x0F:
5522  case 0x10:
5523  case 0x11:
5524  case 0x12:
5525  case 0x13:
5526  case 0x14:
5527  case 0x15:
5528  case 0x16:
5529  case 0x17:
5530  return sax->number_unsigned(static_cast<number_unsigned_t>(current));
5531 
5532  case 0x18: // Unsigned integer (one-byte uint8_t follows)
5533  {
5534  std::uint8_t number;
5535  return get_number(input_format_t::cbor, number) and sax->number_unsigned(number);
5536  }
5537 
5538  case 0x19: // Unsigned integer (two-byte uint16_t follows)
5539  {
5540  std::uint16_t number;
5541  return get_number(input_format_t::cbor, number) and sax->number_unsigned(number);
5542  }
5543 
5544  case 0x1A: // Unsigned integer (four-byte uint32_t follows)
5545  {
5546  std::uint32_t number;
5547  return get_number(input_format_t::cbor, number) and sax->number_unsigned(number);
5548  }
5549 
5550  case 0x1B: // Unsigned integer (eight-byte uint64_t follows)
5551  {
5552  std::uint64_t number;
5553  return get_number(input_format_t::cbor, number) and sax->number_unsigned(number);
5554  }
5555 
5556  // Negative integer -1-0x00..-1-0x17 (-1..-24)
5557  case 0x20:
5558  case 0x21:
5559  case 0x22:
5560  case 0x23:
5561  case 0x24:
5562  case 0x25:
5563  case 0x26:
5564  case 0x27:
5565  case 0x28:
5566  case 0x29:
5567  case 0x2A:
5568  case 0x2B:
5569  case 0x2C:
5570  case 0x2D:
5571  case 0x2E:
5572  case 0x2F:
5573  case 0x30:
5574  case 0x31:
5575  case 0x32:
5576  case 0x33:
5577  case 0x34:
5578  case 0x35:
5579  case 0x36:
5580  case 0x37:
5581  return sax->number_integer(static_cast<std::int8_t>(0x20 - 1 - current));
5582 
5583  case 0x38: // Negative integer (one-byte uint8_t follows)
5584  {
5585  std::uint8_t number;
5586  return get_number(input_format_t::cbor, number) and sax->number_integer(static_cast<number_integer_t>(-1) - number);
5587  }
5588 
5589  case 0x39: // Negative integer -1-n (two-byte uint16_t follows)
5590  {
5591  std::uint16_t number;
5592  return get_number(input_format_t::cbor, number) and sax->number_integer(static_cast<number_integer_t>(-1) - number);
5593  }
5594 
5595  case 0x3A: // Negative integer -1-n (four-byte uint32_t follows)
5596  {
5597  std::uint32_t number;
5598  return get_number(input_format_t::cbor, number) and sax->number_integer(static_cast<number_integer_t>(-1) - number);
5599  }
5600 
5601  case 0x3B: // Negative integer -1-n (eight-byte uint64_t follows)
5602  {
5603  std::uint64_t number;
5604  return get_number(input_format_t::cbor, number) and sax->number_integer(static_cast<number_integer_t>(-1)
5605  - static_cast<number_integer_t>(number));
5606  }
5607 
5608  // UTF-8 string (0x00..0x17 bytes follow)
5609  case 0x60:
5610  case 0x61:
5611  case 0x62:
5612  case 0x63:
5613  case 0x64:
5614  case 0x65:
5615  case 0x66:
5616  case 0x67:
5617  case 0x68:
5618  case 0x69:
5619  case 0x6A:
5620  case 0x6B:
5621  case 0x6C:
5622  case 0x6D:
5623  case 0x6E:
5624  case 0x6F:
5625  case 0x70:
5626  case 0x71:
5627  case 0x72:
5628  case 0x73:
5629  case 0x74:
5630  case 0x75:
5631  case 0x76:
5632  case 0x77:
5633  case 0x78: // UTF-8 string (one-byte uint8_t for n follows)
5634  case 0x79: // UTF-8 string (two-byte uint16_t for n follow)
5635  case 0x7A: // UTF-8 string (four-byte uint32_t for n follow)
5636  case 0x7B: // UTF-8 string (eight-byte uint64_t for n follow)
5637  case 0x7F: // UTF-8 string (indefinite length)
5638  {
5639  string_t s;
5640  return get_cbor_string(s) and sax->string(s);
5641  }
5642 
5643  // array (0x00..0x17 data items follow)
5644  case 0x80:
5645  case 0x81:
5646  case 0x82:
5647  case 0x83:
5648  case 0x84:
5649  case 0x85:
5650  case 0x86:
5651  case 0x87:
5652  case 0x88:
5653  case 0x89:
5654  case 0x8A:
5655  case 0x8B:
5656  case 0x8C:
5657  case 0x8D:
5658  case 0x8E:
5659  case 0x8F:
5660  case 0x90:
5661  case 0x91:
5662  case 0x92:
5663  case 0x93:
5664  case 0x94:
5665  case 0x95:
5666  case 0x96:
5667  case 0x97:
5668  return get_cbor_array(static_cast<std::size_t>(static_cast<unsigned int>(current) & 0x1Fu));
5669 
5670  case 0x98: // array (one-byte uint8_t for n follows)
5671  {
5672  std::uint8_t len;
5673  return get_number(input_format_t::cbor, len) and get_cbor_array(static_cast<std::size_t>(len));
5674  }
5675 
5676  case 0x99: // array (two-byte uint16_t for n follow)
5677  {
5678  std::uint16_t len;
5679  return get_number(input_format_t::cbor, len) and get_cbor_array(static_cast<std::size_t>(len));
5680  }
5681 
5682  case 0x9A: // array (four-byte uint32_t for n follow)
5683  {
5684  std::uint32_t len;
5685  return get_number(input_format_t::cbor, len) and get_cbor_array(static_cast<std::size_t>(len));
5686  }
5687 
5688  case 0x9B: // array (eight-byte uint64_t for n follow)
5689  {
5690  std::uint64_t len;
5691  return get_number(input_format_t::cbor, len) and get_cbor_array(static_cast<std::size_t>(len));
5692  }
5693 
5694  case 0x9F: // array (indefinite length)
5695  return get_cbor_array(std::size_t(-1));
5696 
5697  // map (0x00..0x17 pairs of data items follow)
5698  case 0xA0:
5699  case 0xA1:
5700  case 0xA2:
5701  case 0xA3:
5702  case 0xA4:
5703  case 0xA5:
5704  case 0xA6:
5705  case 0xA7:
5706  case 0xA8:
5707  case 0xA9:
5708  case 0xAA:
5709  case 0xAB:
5710  case 0xAC:
5711  case 0xAD:
5712  case 0xAE:
5713  case 0xAF:
5714  case 0xB0:
5715  case 0xB1:
5716  case 0xB2:
5717  case 0xB3:
5718  case 0xB4:
5719  case 0xB5:
5720  case 0xB6:
5721  case 0xB7:
5722  return get_cbor_object(static_cast<std::size_t>(static_cast<unsigned int>(current) & 0x1Fu));
5723 
5724  case 0xB8: // map (one-byte uint8_t for n follows)
5725  {
5726  std::uint8_t len;
5727  return get_number(input_format_t::cbor, len) and get_cbor_object(static_cast<std::size_t>(len));
5728  }
5729 
5730  case 0xB9: // map (two-byte uint16_t for n follow)
5731  {
5732  std::uint16_t len;
5733  return get_number(input_format_t::cbor, len) and get_cbor_object(static_cast<std::size_t>(len));
5734  }
5735 
5736  case 0xBA: // map (four-byte uint32_t for n follow)
5737  {
5738  std::uint32_t len;
5739  return get_number(input_format_t::cbor, len) and get_cbor_object(static_cast<std::size_t>(len));
5740  }
5741 
5742  case 0xBB: // map (eight-byte uint64_t for n follow)
5743  {
5744  std::uint64_t len;
5745  return get_number(input_format_t::cbor, len) and get_cbor_object(static_cast<std::size_t>(len));
5746  }
5747 
5748  case 0xBF: // map (indefinite length)
5749  return get_cbor_object(std::size_t(-1));
5750 
5751  case 0xF4: // false
5752  return sax->boolean(false);
5753 
5754  case 0xF5: // true
5755  return sax->boolean(true);
5756 
5757  case 0xF6: // null
5758  return sax->null();
5759 
5760  case 0xF9: // Half-Precision Float (two-byte IEEE 754)
5761  {
5762  const int byte1_raw = get();
5763  if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::cbor, "number")))
5764  {
5765  return false;
5766  }
5767  const int byte2_raw = get();
5768  if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::cbor, "number")))
5769  {
5770  return false;
5771  }
5772 
5773  const auto byte1 = static_cast<unsigned char>(byte1_raw);
5774  const auto byte2 = static_cast<unsigned char>(byte2_raw);
5775 
5776  // code from RFC 7049, Appendix D, Figure 3:
5777  // As half-precision floating-point numbers were only added
5778  // to IEEE 754 in 2008, today's programming platforms often
5779  // still only have limited support for them. It is very
5780  // easy to include at least decoding support for them even
5781  // without such support. An example of a small decoder for
5782  // half-precision floating-point numbers in the C language
5783  // is shown in Fig. 3.
5784  const auto half = static_cast<unsigned int>((byte1 << 8u) + byte2);
5785  const double val = [&half]
5786  {
5787  const int exp = (half >> 10u) & 0x1Fu;
5788  const unsigned int mant = half & 0x3FFu;
5789  assert(0 <= exp and exp <= 32);
5790  assert(mant <= 1024);
5791  switch (exp)
5792  {
5793  case 0:
5794  return std::ldexp(mant, -24);
5795  case 31:
5796  return (mant == 0)
5797  ? std::numeric_limits<double>::infinity()
5798  : std::numeric_limits<double>::quiet_NaN();
5799  default:
5800  return std::ldexp(mant + 1024, exp - 25);
5801  }
5802  }();
5803  return sax->number_float((half & 0x8000u) != 0
5804  ? static_cast<number_float_t>(-val)
5805  : static_cast<number_float_t>(val), "");
5806  }
5807 
5808  case 0xFA: // Single-Precision Float (four-byte IEEE 754)
5809  {
5810  float number;
5811  return get_number(input_format_t::cbor, number) and sax->number_float(static_cast<number_float_t>(number), "");
5812  }
5813 
5814  case 0xFB: // Double-Precision Float (eight-byte IEEE 754)
5815  {
5816  double number;
5817  return get_number(input_format_t::cbor, number) and sax->number_float(static_cast<number_float_t>(number), "");
5818  }
5819 
5820  default: // anything else (0xFF is handled inside the other types)
5821  {
5822  auto last_token = get_token_string();
5823  return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::cbor, "invalid byte: 0x" + last_token, "value")));
5824  }
5825  }
5826  }
5827 
5828  /*!
5829  @brief reads a CBOR string
5830 
5831  This function first reads starting bytes to determine the expected
5832  string length and then copies this number of bytes into a string.
5833  Additionally, CBOR's strings with indefinite lengths are supported.
5834 
5835  @param[out] result created string
5836 
5837  @return whether string creation completed
5838  */
5840  {
5841  if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::cbor, "string")))
5842  {
5843  return false;
5844  }
5845 
5846  switch (current)
5847  {
5848  // UTF-8 string (0x00..0x17 bytes follow)
5849  case 0x60:
5850  case 0x61:
5851  case 0x62:
5852  case 0x63:
5853  case 0x64:
5854  case 0x65:
5855  case 0x66:
5856  case 0x67:
5857  case 0x68:
5858  case 0x69:
5859  case 0x6A:
5860  case 0x6B:
5861  case 0x6C:
5862  case 0x6D:
5863  case 0x6E:
5864  case 0x6F:
5865  case 0x70:
5866  case 0x71:
5867  case 0x72:
5868  case 0x73:
5869  case 0x74:
5870  case 0x75:
5871  case 0x76:
5872  case 0x77:
5873  {
5874  return get_string(input_format_t::cbor, static_cast<unsigned int>(current) & 0x1Fu, result);
5875  }
5876 
5877  case 0x78: // UTF-8 string (one-byte uint8_t for n follows)
5878  {
5879  std::uint8_t len;
5880  return get_number(input_format_t::cbor, len) and get_string(input_format_t::cbor, len, result);
5881  }
5882 
5883  case 0x79: // UTF-8 string (two-byte uint16_t for n follow)
5884  {
5885  std::uint16_t len;
5886  return get_number(input_format_t::cbor, len) and get_string(input_format_t::cbor, len, result);
5887  }
5888 
5889  case 0x7A: // UTF-8 string (four-byte uint32_t for n follow)
5890  {
5891  std::uint32_t len;
5892  return get_number(input_format_t::cbor, len) and get_string(input_format_t::cbor, len, result);
5893  }
5894 
5895  case 0x7B: // UTF-8 string (eight-byte uint64_t for n follow)
5896  {
5897  std::uint64_t len;
5898  return get_number(input_format_t::cbor, len) and get_string(input_format_t::cbor, len, result);
5899  }
5900 
5901  case 0x7F: // UTF-8 string (indefinite length)
5902  {
5903  while (get() != 0xFF)
5904  {
5905  string_t chunk;
5906  if (not get_cbor_string(chunk))
5907  {
5908  return false;
5909  }
5910  result.append(chunk);
5911  }
5912  return true;
5913  }
5914 
5915  default:
5916  {
5917  auto last_token = get_token_string();
5918  return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::cbor, "expected length specification (0x60-0x7B) or indefinite string type (0x7F); last byte: 0x" + last_token, "string")));
5919  }
5920  }
5921  }
5922 
5923  /*!
5924  @param[in] len the length of the array or std::size_t(-1) for an
5925  array of indefinite size
5926  @return whether array creation completed
5927  */
5928  bool get_cbor_array(const std::size_t len)
5929  {
5930  if (JSON_HEDLEY_UNLIKELY(not sax->start_array(len)))
5931  {
5932  return false;
5933  }
5934 
5935  if (len != std::size_t(-1))
5936  {
5937  for (std::size_t i = 0; i < len; ++i)
5938  {
5939  if (JSON_HEDLEY_UNLIKELY(not parse_cbor_internal()))
5940  {
5941  return false;
5942  }
5943  }
5944  }
5945  else
5946  {
5947  while (get() != 0xFF)
5948  {
5949  if (JSON_HEDLEY_UNLIKELY(not parse_cbor_internal(false)))
5950  {
5951  return false;
5952  }
5953  }
5954  }
5955 
5956  return sax->end_array();
5957  }
5958 
5959  /*!
5960  @param[in] len the length of the object or std::size_t(-1) for an
5961  object of indefinite size
5962  @return whether object creation completed
5963  */
5964  bool get_cbor_object(const std::size_t len)
5965  {
5966  if (JSON_HEDLEY_UNLIKELY(not sax->start_object(len)))
5967  {
5968  return false;
5969  }
5970 
5971  string_t key;
5972  if (len != std::size_t(-1))
5973  {
5974  for (std::size_t i = 0; i < len; ++i)
5975  {
5976  get();
5977  if (JSON_HEDLEY_UNLIKELY(not get_cbor_string(key) or not sax->key(key)))
5978  {
5979  return false;
5980  }
5981 
5982  if (JSON_HEDLEY_UNLIKELY(not parse_cbor_internal()))
5983  {
5984  return false;
5985  }
5986  key.clear();
5987  }
5988  }
5989  else
5990  {
5991  while (get() != 0xFF)
5992  {
5993  if (JSON_HEDLEY_UNLIKELY(not get_cbor_string(key) or not sax->key(key)))
5994  {
5995  return false;
5996  }
5997 
5998  if (JSON_HEDLEY_UNLIKELY(not parse_cbor_internal()))
5999  {
6000  return false;
6001  }
6002  key.clear();
6003  }
6004  }
6005 
6006  return sax->end_object();
6007  }
6008 
6009  /////////////
6010  // MsgPack //
6011  /////////////
6012 
6013  /*!
6014  @return whether a valid MessagePack value was passed to the SAX parser
6015  */
6017  {
6018  switch (get())
6019  {
6020  // EOF
6021  case std::char_traits<char>::eof():
6022  return unexpect_eof(input_format_t::msgpack, "value");
6023 
6024  // positive fixint
6025  case 0x00:
6026  case 0x01:
6027  case 0x02:
6028  case 0x03:
6029  case 0x04:
6030  case 0x05:
6031  case 0x06:
6032  case 0x07:
6033  case 0x08:
6034  case 0x09:
6035  case 0x0A:
6036  case 0x0B:
6037  case 0x0C:
6038  case 0x0D:
6039  case 0x0E:
6040  case 0x0F:
6041  case 0x10:
6042  case 0x11:
6043  case 0x12:
6044  case 0x13:
6045  case 0x14:
6046  case 0x15:
6047  case 0x16:
6048  case 0x17:
6049  case 0x18:
6050  case 0x19:
6051  case 0x1A:
6052  case 0x1B:
6053  case 0x1C:
6054  case 0x1D:
6055  case 0x1E:
6056  case 0x1F:
6057  case 0x20:
6058  case 0x21:
6059  case 0x22:
6060  case 0x23:
6061  case 0x24:
6062  case 0x25:
6063  case 0x26:
6064  case 0x27:
6065  case 0x28:
6066  case 0x29:
6067  case 0x2A:
6068  case 0x2B:
6069  case 0x2C:
6070  case 0x2D:
6071  case 0x2E:
6072  case 0x2F:
6073  case 0x30:
6074  case 0x31:
6075  case 0x32:
6076  case 0x33:
6077  case 0x34:
6078  case 0x35:
6079  case 0x36:
6080  case 0x37:
6081  case 0x38:
6082  case 0x39:
6083  case 0x3A:
6084  case 0x3B:
6085  case 0x3C:
6086  case 0x3D:
6087  case 0x3E:
6088  case 0x3F:
6089  case 0x40:
6090  case 0x41:
6091  case 0x42:
6092  case 0x43:
6093  case 0x44:
6094  case 0x45:
6095  case 0x46:
6096  case 0x47:
6097  case 0x48:
6098  case 0x49:
6099  case 0x4A:
6100  case 0x4B:
6101  case 0x4C:
6102  case 0x4D:
6103  case 0x4E:
6104  case 0x4F:
6105  case 0x50:
6106  case 0x51:
6107  case 0x52:
6108  case 0x53:
6109  case 0x54:
6110  case 0x55:
6111  case 0x56:
6112  case 0x57:
6113  case 0x58:
6114  case 0x59:
6115  case 0x5A:
6116  case 0x5B:
6117  case 0x5C:
6118  case 0x5D:
6119  case 0x5E:
6120  case 0x5F:
6121  case 0x60:
6122  case 0x61:
6123  case 0x62:
6124  case 0x63:
6125  case 0x64:
6126  case 0x65:
6127  case 0x66:
6128  case 0x67:
6129  case 0x68:
6130  case 0x69:
6131  case 0x6A:
6132  case 0x6B:
6133  case 0x6C:
6134  case 0x6D:
6135  case 0x6E:
6136  case 0x6F:
6137  case 0x70:
6138  case 0x71:
6139  case 0x72:
6140  case 0x73:
6141  case 0x74:
6142  case 0x75:
6143  case 0x76:
6144  case 0x77:
6145  case 0x78:
6146  case 0x79:
6147  case 0x7A:
6148  case 0x7B:
6149  case 0x7C:
6150  case 0x7D:
6151  case 0x7E:
6152  case 0x7F:
6153  return sax->number_unsigned(static_cast<number_unsigned_t>(current));
6154 
6155  // fixmap
6156  case 0x80:
6157  case 0x81:
6158  case 0x82:
6159  case 0x83:
6160  case 0x84:
6161  case 0x85:
6162  case 0x86:
6163  case 0x87:
6164  case 0x88:
6165  case 0x89:
6166  case 0x8A:
6167  case 0x8B:
6168  case 0x8C:
6169  case 0x8D:
6170  case 0x8E:
6171  case 0x8F:
6172  return get_msgpack_object(static_cast<std::size_t>(static_cast<unsigned int>(current) & 0x0Fu));
6173 
6174  // fixarray
6175  case 0x90:
6176  case 0x91:
6177  case 0x92:
6178  case 0x93:
6179  case 0x94:
6180  case 0x95:
6181  case 0x96:
6182  case 0x97:
6183  case 0x98:
6184  case 0x99:
6185  case 0x9A:
6186  case 0x9B:
6187  case 0x9C:
6188  case 0x9D:
6189  case 0x9E:
6190  case 0x9F:
6191  return get_msgpack_array(static_cast<std::size_t>(static_cast<unsigned int>(current) & 0x0Fu));
6192 
6193  // fixstr
6194  case 0xA0:
6195  case 0xA1:
6196  case 0xA2:
6197  case 0xA3:
6198  case 0xA4:
6199  case 0xA5:
6200  case 0xA6:
6201  case 0xA7:
6202  case 0xA8:
6203  case 0xA9:
6204  case 0xAA:
6205  case 0xAB:
6206  case 0xAC:
6207  case 0xAD:
6208  case 0xAE:
6209  case 0xAF:
6210  case 0xB0:
6211  case 0xB1:
6212  case 0xB2:
6213  case 0xB3:
6214  case 0xB4:
6215  case 0xB5:
6216  case 0xB6:
6217  case 0xB7:
6218  case 0xB8:
6219  case 0xB9:
6220  case 0xBA:
6221  case 0xBB:
6222  case 0xBC:
6223  case 0xBD:
6224  case 0xBE:
6225  case 0xBF:
6226  case 0xD9: // str 8
6227  case 0xDA: // str 16
6228  case 0xDB: // str 32
6229  {
6230  string_t s;
6231  return get_msgpack_string(s) and sax->string(s);
6232  }
6233 
6234  case 0xC0: // nil
6235  return sax->null();
6236 
6237  case 0xC2: // false
6238  return sax->boolean(false);
6239 
6240  case 0xC3: // true
6241  return sax->boolean(true);
6242 
6243  case 0xCA: // float 32
6244  {
6245  float number;
6246  return get_number(input_format_t::msgpack, number) and sax->number_float(static_cast<number_float_t>(number), "");
6247  }
6248 
6249  case 0xCB: // float 64
6250  {
6251  double number;
6252  return get_number(input_format_t::msgpack, number) and sax->number_float(static_cast<number_float_t>(number), "");
6253  }
6254 
6255  case 0xCC: // uint 8
6256  {
6257  std::uint8_t number;
6258  return get_number(input_format_t::msgpack, number) and sax->number_unsigned(number);
6259  }
6260 
6261  case 0xCD: // uint 16
6262  {
6263  std::uint16_t number;
6264  return get_number(input_format_t::msgpack, number) and sax->number_unsigned(number);
6265  }
6266 
6267  case 0xCE: // uint 32
6268  {
6269  std::uint32_t number;
6270  return get_number(input_format_t::msgpack, number) and sax->number_unsigned(number);
6271  }
6272 
6273  case 0xCF: // uint 64
6274  {
6275  std::uint64_t number;
6276  return get_number(input_format_t::msgpack, number) and sax->number_unsigned(number);
6277  }
6278 
6279  case 0xD0: // int 8
6280  {
6281  std::int8_t number;
6282  return get_number(input_format_t::msgpack, number) and sax->number_integer(number);
6283  }
6284 
6285  case 0xD1: // int 16
6286  {
6287  std::int16_t number;
6288  return get_number(input_format_t::msgpack, number) and sax->number_integer(number);
6289  }
6290 
6291  case 0xD2: // int 32
6292  {
6293  std::int32_t number;
6294  return get_number(input_format_t::msgpack, number) and sax->number_integer(number);
6295  }
6296 
6297  case 0xD3: // int 64
6298  {
6299  std::int64_t number;
6300  return get_number(input_format_t::msgpack, number) and sax->number_integer(number);
6301  }
6302 
6303  case 0xDC: // array 16
6304  {
6305  std::uint16_t len;
6306  return get_number(input_format_t::msgpack, len) and get_msgpack_array(static_cast<std::size_t>(len));
6307  }
6308 
6309  case 0xDD: // array 32
6310  {
6311  std::uint32_t len;
6312  return get_number(input_format_t::msgpack, len) and get_msgpack_array(static_cast<std::size_t>(len));
6313  }
6314 
6315  case 0xDE: // map 16
6316  {
6317  std::uint16_t len;
6318  return get_number(input_format_t::msgpack, len) and get_msgpack_object(static_cast<std::size_t>(len));
6319  }
6320 
6321  case 0xDF: // map 32
6322  {
6323  std::uint32_t len;
6324  return get_number(input_format_t::msgpack, len) and get_msgpack_object(static_cast<std::size_t>(len));
6325  }
6326 
6327  // negative fixint
6328  case 0xE0:
6329  case 0xE1:
6330  case 0xE2:
6331  case 0xE3:
6332  case 0xE4:
6333  case 0xE5:
6334  case 0xE6:
6335  case 0xE7:
6336  case 0xE8:
6337  case 0xE9:
6338  case 0xEA:
6339  case 0xEB:
6340  case 0xEC:
6341  case 0xED:
6342  case 0xEE:
6343  case 0xEF:
6344  case 0xF0:
6345  case 0xF1:
6346  case 0xF2:
6347  case 0xF3:
6348  case 0xF4:
6349  case 0xF5:
6350  case 0xF6:
6351  case 0xF7:
6352  case 0xF8:
6353  case 0xF9:
6354  case 0xFA:
6355  case 0xFB:
6356  case 0xFC:
6357  case 0xFD:
6358  case 0xFE:
6359  case 0xFF:
6360  return sax->number_integer(static_cast<std::int8_t>(current));
6361 
6362  default: // anything else
6363  {
6364  auto last_token = get_token_string();
6365  return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::msgpack, "invalid byte: 0x" + last_token, "value")));
6366  }
6367  }
6368  }
6369 
6370  /*!
6371  @brief reads a MessagePack string
6372 
6373  This function first reads starting bytes to determine the expected
6374  string length and then copies this number of bytes into a string.
6375 
6376  @param[out] result created string
6377 
6378  @return whether string creation completed
6379  */
6381  {
6382  if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::msgpack, "string")))
6383  {
6384  return false;
6385  }
6386 
6387  switch (current)
6388  {
6389  // fixstr
6390  case 0xA0:
6391  case 0xA1:
6392  case 0xA2:
6393  case 0xA3:
6394  case 0xA4:
6395  case 0xA5:
6396  case 0xA6:
6397  case 0xA7:
6398  case 0xA8:
6399  case 0xA9:
6400  case 0xAA:
6401  case 0xAB:
6402  case 0xAC:
6403  case 0xAD:
6404  case 0xAE:
6405  case 0xAF:
6406  case 0xB0:
6407  case 0xB1:
6408  case 0xB2:
6409  case 0xB3:
6410  case 0xB4:
6411  case 0xB5:
6412  case 0xB6:
6413  case 0xB7:
6414  case 0xB8:
6415  case 0xB9:
6416  case 0xBA:
6417  case 0xBB:
6418  case 0xBC:
6419  case 0xBD:
6420  case 0xBE:
6421  case 0xBF:
6422  {
6423  return get_string(input_format_t::msgpack, static_cast<unsigned int>(current) & 0x1Fu, result);
6424  }
6425 
6426  case 0xD9: // str 8
6427  {
6428  std::uint8_t len;
6429  return get_number(input_format_t::msgpack, len) and get_string(input_format_t::msgpack, len, result);
6430  }
6431 
6432  case 0xDA: // str 16
6433  {
6434  std::uint16_t len;
6435  return get_number(input_format_t::msgpack, len) and get_string(input_format_t::msgpack, len, result);
6436  }
6437 
6438  case 0xDB: // str 32
6439  {
6440  std::uint32_t len;
6441  return get_number(input_format_t::msgpack, len) and get_string(input_format_t::msgpack, len, result);
6442  }
6443 
6444  default:
6445  {
6446  auto last_token = get_token_string();
6447  return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::msgpack, "expected length specification (0xA0-0xBF, 0xD9-0xDB); last byte: 0x" + last_token, "string")));
6448  }
6449  }
6450  }
6451 
6452  /*!
6453  @param[in] len the length of the array
6454  @return whether array creation completed
6455  */
6456  bool get_msgpack_array(const std::size_t len)
6457  {
6458  if (JSON_HEDLEY_UNLIKELY(not sax->start_array(len)))
6459  {
6460  return false;
6461  }
6462 
6463  for (std::size_t i = 0; i < len; ++i)
6464  {
6465  if (JSON_HEDLEY_UNLIKELY(not parse_msgpack_internal()))
6466  {
6467  return false;
6468  }
6469  }
6470 
6471  return sax->end_array();
6472  }
6473 
6474  /*!
6475  @param[in] len the length of the object
6476  @return whether object creation completed
6477  */
6478  bool get_msgpack_object(const std::size_t len)
6479  {
6480  if (JSON_HEDLEY_UNLIKELY(not sax->start_object(len)))
6481  {
6482  return false;
6483  }
6484 
6485  string_t key;
6486  for (std::size_t i = 0; i < len; ++i)
6487  {
6488  get();
6489  if (JSON_HEDLEY_UNLIKELY(not get_msgpack_string(key) or not sax->key(key)))
6490  {
6491  return false;
6492  }
6493 
6494  if (JSON_HEDLEY_UNLIKELY(not parse_msgpack_internal()))
6495  {
6496  return false;
6497  }
6498  key.clear();
6499  }
6500 
6501  return sax->end_object();
6502  }
6503 
6504  ////////////
6505  // UBJSON //
6506  ////////////
6507 
6508  /*!
6509  @param[in] get_char whether a new character should be retrieved from the
6510  input (true, default) or whether the last read
6511  character should be considered instead
6512 
6513  @return whether a valid UBJSON value was passed to the SAX parser
6514  */
6515  bool parse_ubjson_internal(const bool get_char = true)
6516  {
6517  return get_ubjson_value(get_char ? get_ignore_noop() : current);
6518  }
6519 
6520  /*!
6521  @brief reads a UBJSON string
6522 
6523  This function is either called after reading the 'S' byte explicitly
6524  indicating a string, or in case of an object key where the 'S' byte can be
6525  left out.
6526 
6527  @param[out] result created string
6528  @param[in] get_char whether a new character should be retrieved from the
6529  input (true, default) or whether the last read
6530  character should be considered instead
6531 
6532  @return whether string creation completed
6533  */
6534  bool get_ubjson_string(string_t& result, const bool get_char = true)
6535  {
6536  if (get_char)
6537  {
6538  get(); // TODO(niels): may we ignore N here?
6539  }
6540 
6541  if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::ubjson, "value")))
6542  {
6543  return false;
6544  }
6545 
6546  switch (current)
6547  {
6548  case 'U':
6549  {
6550  std::uint8_t len;
6551  return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result);
6552  }
6553 
6554  case 'i':
6555  {
6556  std::int8_t len;
6557  return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result);
6558  }
6559 
6560  case 'I':
6561  {
6562  std::int16_t len;
6563  return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result);
6564  }
6565 
6566  case 'l':
6567  {
6568  std::int32_t len;
6569  return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result);
6570  }
6571 
6572  case 'L':
6573  {
6574  std::int64_t len;
6575  return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result);
6576  }
6577 
6578  default:
6579  auto last_token = get_token_string();
6580  return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::ubjson, "expected length type specification (U, i, I, l, L); last byte: 0x" + last_token, "string")));
6581  }
6582  }
6583 
6584  /*!
6585  @param[out] result determined size
6586  @return whether size determination completed
6587  */
6588  bool get_ubjson_size_value(std::size_t& result)
6589  {
6590  switch (get_ignore_noop())
6591  {
6592  case 'U':
6593  {
6594  std::uint8_t number;
6595  if (JSON_HEDLEY_UNLIKELY(not get_number(input_format_t::ubjson, number)))
6596  {
6597  return false;
6598  }
6599  result = static_cast<std::size_t>(number);
6600  return true;
6601  }
6602 
6603  case 'i':
6604  {
6605  std::int8_t number;
6606  if (JSON_HEDLEY_UNLIKELY(not get_number(input_format_t::ubjson, number)))
6607  {
6608  return false;
6609  }
6610  result = static_cast<std::size_t>(number);
6611  return true;
6612  }
6613 
6614  case 'I':
6615  {
6616  std::int16_t number;
6617  if (JSON_HEDLEY_UNLIKELY(not get_number(input_format_t::ubjson, number)))
6618  {
6619  return false;
6620  }
6621  result = static_cast<std::size_t>(number);
6622  return true;
6623  }
6624 
6625  case 'l':
6626  {
6627  std::int32_t number;
6628  if (JSON_HEDLEY_UNLIKELY(not get_number(input_format_t::ubjson, number)))
6629  {
6630  return false;
6631  }
6632  result = static_cast<std::size_t>(number);
6633  return true;
6634  }
6635 
6636  case 'L':
6637  {
6638  std::int64_t number;
6639  if (JSON_HEDLEY_UNLIKELY(not get_number(input_format_t::ubjson, number)))
6640  {
6641  return false;
6642  }
6643  result = static_cast<std::size_t>(number);
6644  return true;
6645  }
6646 
6647  default:
6648  {
6649  auto last_token = get_token_string();
6650  return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::ubjson, "expected length type specification (U, i, I, l, L) after '#'; last byte: 0x" + last_token, "size")));
6651  }
6652  }
6653  }
6654 
6655  /*!
6656  @brief determine the type and size for a container
6657 
6658  In the optimized UBJSON format, a type and a size can be provided to allow
6659  for a more compact representation.
6660 
6661  @param[out] result pair of the size and the type
6662 
6663  @return whether pair creation completed
6664  */
6665  bool get_ubjson_size_type(std::pair<std::size_t, int>& result)
6666  {
6667  result.first = string_t::npos; // size
6668  result.second = 0; // type
6669 
6670  get_ignore_noop();
6671 
6672  if (current == '$')
6673  {
6674  result.second = get(); // must not ignore 'N', because 'N' maybe the type
6675  if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::ubjson, "type")))
6676  {
6677  return false;
6678  }
6679 
6680  get_ignore_noop();
6681  if (JSON_HEDLEY_UNLIKELY(current != '#'))
6682  {
6683  if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::ubjson, "value")))
6684  {
6685  return false;
6686  }
6687  auto last_token = get_token_string();
6688  return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::ubjson, "expected '#' after type information; last byte: 0x" + last_token, "size")));
6689  }
6690 
6691  return get_ubjson_size_value(result.first);
6692  }
6693 
6694  if (current == '#')
6695  {
6696  return get_ubjson_size_value(result.first);
6697  }
6698 
6699  return true;
6700  }
6701 
6702  /*!
6703  @param prefix the previously read or set type prefix
6704  @return whether value creation completed
6705  */
6706  bool get_ubjson_value(const int prefix)
6707  {
6708  switch (prefix)
6709  {
6710  case std::char_traits<char>::eof(): // EOF
6711  return unexpect_eof(input_format_t::ubjson, "value");
6712 
6713  case 'T': // true
6714  return sax->boolean(true);
6715  case 'F': // false
6716  return sax->boolean(false);
6717 
6718  case 'Z': // null
6719  return sax->null();
6720 
6721  case 'U':
6722  {
6723  std::uint8_t number;
6724  return get_number(input_format_t::ubjson, number) and sax->number_unsigned(number);
6725  }
6726 
6727  case 'i':
6728  {
6729  std::int8_t number;
6730  return get_number(input_format_t::ubjson, number) and sax->number_integer(number);
6731  }
6732 
6733  case 'I':
6734  {
6735  std::int16_t number;
6736  return get_number(input_format_t::ubjson, number) and sax->number_integer(number);
6737  }
6738 
6739  case 'l':
6740  {
6741  std::int32_t number;
6742  return get_number(input_format_t::ubjson, number) and sax->number_integer(number);
6743  }
6744 
6745  case 'L':
6746  {
6747  std::int64_t number;
6748  return get_number(input_format_t::ubjson, number) and sax->number_integer(number);
6749  }
6750 
6751  case 'd':
6752  {
6753  float number;
6754  return get_number(input_format_t::ubjson, number) and sax->number_float(static_cast<number_float_t>(number), "");
6755  }
6756 
6757  case 'D':
6758  {
6759  double number;
6760  return get_number(input_format_t::ubjson, number) and sax->number_float(static_cast<number_float_t>(number), "");
6761  }
6762 
6763  case 'C': // char
6764  {
6765  get();
6766  if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::ubjson, "char")))
6767  {
6768  return false;
6769  }
6770  if (JSON_HEDLEY_UNLIKELY(current > 127))
6771  {
6772  auto last_token = get_token_string();
6773  return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::ubjson, "byte after 'C' must be in range 0x00..0x7F; last byte: 0x" + last_token, "char")));
6774  }
6775  string_t s(1, static_cast<char>(current));
6776  return sax->string(s);
6777  }
6778 
6779  case 'S': // string
6780  {
6781  string_t s;
6782  return get_ubjson_string(s) and sax->string(s);
6783  }
6784 
6785  case '[': // array
6786  return get_ubjson_array();
6787 
6788  case '{': // object
6789  return get_ubjson_object();
6790 
6791  default: // anything else
6792  {
6793  auto last_token = get_token_string();
6794  return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::ubjson, "invalid byte: 0x" + last_token, "value")));
6795  }
6796  }
6797  }
6798 
6799  /*!
6800  @return whether array creation completed
6801  */
6803  {
6804  std::pair<std::size_t, int> size_and_type;
6805  if (JSON_HEDLEY_UNLIKELY(not get_ubjson_size_type(size_and_type)))
6806  {
6807  return false;
6808  }
6809 
6810  if (size_and_type.first != string_t::npos)
6811  {
6812  if (JSON_HEDLEY_UNLIKELY(not sax->start_array(size_and_type.first)))
6813  {
6814  return false;
6815  }
6816 
6817  if (size_and_type.second != 0)
6818  {
6819  if (size_and_type.second != 'N')
6820  {
6821  for (std::size_t i = 0; i < size_and_type.first; ++i)
6822  {
6823  if (JSON_HEDLEY_UNLIKELY(not get_ubjson_value(size_and_type.second)))
6824  {
6825  return false;
6826  }
6827  }
6828  }
6829  }
6830  else
6831  {
6832  for (std::size_t i = 0; i < size_and_type.first; ++i)
6833  {
6834  if (JSON_HEDLEY_UNLIKELY(not parse_ubjson_internal()))
6835  {
6836  return false;
6837  }
6838  }
6839  }
6840  }
6841  else
6842  {
6843  if (JSON_HEDLEY_UNLIKELY(not sax->start_array(std::size_t(-1))))
6844  {
6845  return false;
6846  }
6847 
6848  while (current != ']')
6849  {
6850  if (JSON_HEDLEY_UNLIKELY(not parse_ubjson_internal(false)))
6851  {
6852  return false;
6853  }
6854  get_ignore_noop();
6855  }
6856  }
6857 
6858  return sax->end_array();
6859  }
6860 
6861  /*!
6862  @return whether object creation completed
6863  */
6865  {
6866  std::pair<std::size_t, int> size_and_type;
6867  if (JSON_HEDLEY_UNLIKELY(not get_ubjson_size_type(size_and_type)))
6868  {
6869  return false;
6870  }
6871 
6872  string_t key;
6873  if (size_and_type.first != string_t::npos)
6874  {
6875  if (JSON_HEDLEY_UNLIKELY(not sax->start_object(size_and_type.first)))
6876  {
6877  return false;
6878  }
6879 
6880  if (size_and_type.second != 0)
6881  {
6882  for (std::size_t i = 0; i < size_and_type.first; ++i)
6883  {
6884  if (JSON_HEDLEY_UNLIKELY(not get_ubjson_string(key) or not sax->key(key)))
6885  {
6886  return false;
6887  }
6888  if (JSON_HEDLEY_UNLIKELY(not get_ubjson_value(size_and_type.second)))
6889  {
6890  return false;
6891  }
6892  key.clear();
6893  }
6894  }
6895  else
6896  {
6897  for (std::size_t i = 0; i < size_and_type.first; ++i)
6898  {
6899  if (JSON_HEDLEY_UNLIKELY(not get_ubjson_string(key) or not sax->key(key)))
6900  {
6901  return false;
6902  }
6903  if (JSON_HEDLEY_UNLIKELY(not parse_ubjson_internal()))
6904  {
6905  return false;
6906  }
6907  key.clear();
6908  }
6909  }
6910  }
6911  else
6912  {
6913  if (JSON_HEDLEY_UNLIKELY(not sax->start_object(std::size_t(-1))))
6914  {
6915  return false;
6916  }
6917 
6918  while (current != '}')
6919  {
6920  if (JSON_HEDLEY_UNLIKELY(not get_ubjson_string(key, false) or not sax->key(key)))
6921  {
6922  return false;
6923  }
6924  if (JSON_HEDLEY_UNLIKELY(not parse_ubjson_internal()))
6925  {
6926  return false;
6927  }
6928  get_ignore_noop();
6929  key.clear();
6930  }
6931  }
6932 
6933  return sax->end_object();
6934  }
6935 
6936  ///////////////////////
6937  // Utility functions //
6938  ///////////////////////
6939 
6940  /*!
6941  @brief get next character from the input
6942 
6943  This function provides the interface to the used input adapter. It does
6944  not throw in case the input reached EOF, but returns a -'ve valued
6945  `std::char_traits<char>::eof()` in that case.
6946 
6947  @return character read from the input
6948  */
6949  int get()
6950  {
6951  ++chars_read;
6952  return current = ia->get_character();
6953  }
6954 
6955  /*!
6956  @return character read from the input after ignoring all 'N' entries
6957  */
6959  {
6960  do
6961  {
6962  get();
6963  }
6964  while (current == 'N');
6965 
6966  return current;
6967  }
6968 
6969  /*
6970  @brief read a number from the input
6971 
6972  @tparam NumberType the type of the number
6973  @param[in] format the current format (for diagnostics)
6974  @param[out] result number of type @a NumberType
6975 
6976  @return whether conversion completed
6977 
6978  @note This function needs to respect the system's endianess, because
6979  bytes in CBOR, MessagePack, and UBJSON are stored in network order
6980  (big endian) and therefore need reordering on little endian systems.
6981  */
6982  template<typename NumberType, bool InputIsLittleEndian = false>
6983  bool get_number(const input_format_t format, NumberType& result)
6984  {
6985  // step 1: read input into array with system's byte order
6986  std::array<std::uint8_t, sizeof(NumberType)> vec;
6987  for (std::size_t i = 0; i < sizeof(NumberType); ++i)
6988  {
6989  get();
6990  if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(format, "number")))
6991  {
6992  return false;
6993  }
6994 
6995  // reverse byte order prior to conversion if necessary
6996  if (is_little_endian != InputIsLittleEndian)
6997  {
6998  vec[sizeof(NumberType) - i - 1] = static_cast<std::uint8_t>(current);
6999  }
7000  else
7001  {
7002  vec[i] = static_cast<std::uint8_t>(current); // LCOV_EXCL_LINE
7003  }
7004  }
7005 
7006  // step 2: convert array into number of type T and return
7007  std::memcpy(&result, vec.data(), sizeof(NumberType));
7008  return true;
7009  }
7010 
7011  /*!
7012  @brief create a string by reading characters from the input
7013 
7014  @tparam NumberType the type of the number
7015  @param[in] format the current format (for diagnostics)
7016  @param[in] len number of characters to read
7017  @param[out] result string created by reading @a len bytes
7018 
7019  @return whether string creation completed
7020 
7021  @note We can not reserve @a len bytes for the result, because @a len
7022  may be too large. Usually, @ref unexpect_eof() detects the end of
7023  the input before we run out of string memory.
7024  */
7025  template<typename NumberType>
7027  const NumberType len,
7028  string_t& result)
7029  {
7030  bool success = true;
7031  std::generate_n(std::back_inserter(result), len, [this, &success, &format]()
7032  {
7033  get();
7034  if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(format, "string")))
7035  {
7036  success = false;
7037  }
7038  return static_cast<char>(current);
7039  });
7040  return success;
7041  }
7042 
7043  /*!
7044  @param[in] format the current format (for diagnostics)
7045  @param[in] context further context information (for diagnostics)
7046  @return whether the last read character is not EOF
7047  */
7049  bool unexpect_eof(const input_format_t format, const char* context) const
7050  {
7051  if (JSON_HEDLEY_UNLIKELY(current == std::char_traits<char>::eof()))
7052  {
7053  return sax->parse_error(chars_read, "<end of file>",
7054  parse_error::create(110, chars_read, exception_message(format, "unexpected end of input", context)));
7055  }
7056  return true;
7057  }
7058 
7059  /*!
7060  @return a string representation of the last read byte
7061  */
7062  std::string get_token_string() const
7063  {
7064  std::array<char, 3> cr{{}};
7065  (std::snprintf)(cr.data(), cr.size(), "%.2hhX", static_cast<unsigned char>(current));
7066  return std::string{cr.data()};
7067  }
7068 
7069  /*!
7070  @param[in] format the current format
7071  @param[in] detail a detailed error message
7072  @param[in] context further context information
7073  @return a message string to use in the parse_error exceptions
7074  */
7076  const std::string& detail,
7077  const std::string& context) const
7078  {
7079  std::string error_msg = "syntax error while parsing ";
7080 
7081  switch (format)
7082  {
7083  case input_format_t::cbor:
7084  error_msg += "CBOR";
7085  break;
7086 
7087  case input_format_t::msgpack:
7088  error_msg += "MessagePack";
7089  break;
7090 
7091  case input_format_t::ubjson:
7092  error_msg += "UBJSON";
7093  break;
7094 
7095  case input_format_t::bson:
7096  error_msg += "BSON";
7097  break;
7098 
7099  default: // LCOV_EXCL_LINE
7100  assert(false); // LCOV_EXCL_LINE
7101  }
7102 
7103  return error_msg + " " + context + ": " + detail;
7104  }
7105 
7106  private:
7107  /// input adapter
7108  input_adapter_t ia = nullptr;
7109 
7110  /// the current character
7111  int current = std::char_traits<char>::eof();
7112 
7113  /// the number of characters read
7114  std::size_t chars_read = 0;
7115 
7116  /// whether we can assume little endianess
7117  const bool is_little_endian = little_endianess();
7118 
7119  /// the SAX parser
7120  json_sax_t* sax = nullptr;
7121 };
7122 } // namespace detail
7123 } // namespace nlohmann
7124 
7125 // #include <nlohmann/detail/input/input_adapters.hpp>
7126 
7127 // #include <nlohmann/detail/input/lexer.hpp>
7128 
7129 
7130 #include <array> // array
7131 #include <clocale> // localeconv
7132 #include <cstddef> // size_t
7133 #include <cstdio> // snprintf
7134 #include <cstdlib> // strtof, strtod, strtold, strtoll, strtoull
7135 #include <initializer_list> // initializer_list
7136 #include <string> // char_traits, string
7137 #include <utility> // move
7138 #include <vector> // vector
7139 
7140 // #include <nlohmann/detail/input/input_adapters.hpp>
7141 
7142 // #include <nlohmann/detail/input/position_t.hpp>
7143 
7144 // #include <nlohmann/detail/macro_scope.hpp>
7145 
7146 
7147 namespace nlohmann
7148 {
7149 namespace detail
7150 {
7151 ///////////
7152 // lexer //
7153 ///////////
7154 
7155 /*!
7156 @brief lexical analysis
7157 
7158 This class organizes the lexical analysis during JSON deserialization.
7159 */
7160 template<typename BasicJsonType>
7161 class lexer
7162 {
7163  using number_integer_t = typename BasicJsonType::number_integer_t;
7164  using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
7165  using number_float_t = typename BasicJsonType::number_float_t;
7166  using string_t = typename BasicJsonType::string_t;
7167 
7168  public:
7169  /// token types for the parser
7170  enum class token_type
7171  {
7172  uninitialized, ///< indicating the scanner is uninitialized
7173  literal_true, ///< the `true` literal
7174  literal_false, ///< the `false` literal
7175  literal_null, ///< the `null` literal
7176  value_string, ///< a string -- use get_string() for actual value
7177  value_unsigned, ///< an unsigned integer -- use get_number_unsigned() for actual value
7178  value_integer, ///< a signed integer -- use get_number_integer() for actual value
7179  value_float, ///< an floating point number -- use get_number_float() for actual value
7180  begin_array, ///< the character for array begin `[`
7181  begin_object, ///< the character for object begin `{`
7182  end_array, ///< the character for array end `]`
7183  end_object, ///< the character for object end `}`
7184  name_separator, ///< the name separator `:`
7185  value_separator, ///< the value separator `,`
7186  parse_error, ///< indicating a parse error
7187  end_of_input, ///< indicating the end of the input buffer
7188  literal_or_value ///< a literal or the begin of a value (only for diagnostics)
7189  };
7190 
7191  /// return name of values of type token_type (only used for errors)
7194  static const char* token_type_name(const token_type t) noexcept
7195  {
7196  switch (t)
7197  {
7198  case token_type::uninitialized:
7199  return "<uninitialized>";
7200  case token_type::literal_true:
7201  return "true literal";
7202  case token_type::literal_false:
7203  return "false literal";
7204  case token_type::literal_null:
7205  return "null literal";
7206  case token_type::value_string:
7207  return "string literal";
7208  case lexer::token_type::value_unsigned:
7209  case lexer::token_type::value_integer:
7210  case lexer::token_type::value_float:
7211  return "number literal";
7212  case token_type::begin_array:
7213  return "'['";
7214  case token_type::begin_object:
7215  return "'{'";
7216  case token_type::end_array:
7217  return "']'";
7218  case token_type::end_object:
7219  return "'}'";
7220  case token_type::name_separator:
7221  return "':'";
7222  case token_type::value_separator:
7223  return "','";
7224  case token_type::parse_error:
7225  return "<parse error>";
7226  case token_type::end_of_input:
7227  return "end of input";
7228  case token_type::literal_or_value:
7229  return "'[', '{', or a literal";
7230  // LCOV_EXCL_START
7231  default: // catch non-enum values
7232  return "unknown token";
7233  // LCOV_EXCL_STOP
7234  }
7235  }
7236 
7237  explicit lexer(detail::input_adapter_t&& adapter)
7238  : ia(std::move(adapter)), decimal_point_char(get_decimal_point()) {}
7239 
7240  // delete because of pointer members
7241  lexer(const lexer&) = delete;
7242  lexer(lexer&&) = delete;
7243  lexer& operator=(lexer&) = delete;
7244  lexer& operator=(lexer&&) = delete;
7245  ~lexer() = default;
7246 
7247  private:
7248  /////////////////////
7249  // locales
7250  /////////////////////
7251 
7252  /// return the locale-dependent decimal point
7254  static char get_decimal_point() noexcept
7255  {
7256  const auto loc = localeconv();
7257  assert(loc != nullptr);
7258  return (loc->decimal_point == nullptr) ? '.' : *(loc->decimal_point);
7259  }
7260 
7261  /////////////////////
7262  // scan functions
7263  /////////////////////
7264 
7265  /*!
7266  @brief get codepoint from 4 hex characters following `\u`
7267 
7268  For input "\u c1 c2 c3 c4" the codepoint is:
7269  (c1 * 0x1000) + (c2 * 0x0100) + (c3 * 0x0010) + c4
7270  = (c1 << 12) + (c2 << 8) + (c3 << 4) + (c4 << 0)
7271 
7272  Furthermore, the possible characters '0'..'9', 'A'..'F', and 'a'..'f'
7273  must be converted to the integers 0x0..0x9, 0xA..0xF, 0xA..0xF, resp. The
7274  conversion is done by subtracting the offset (0x30, 0x37, and 0x57)
7275  between the ASCII value of the character and the desired integer value.
7276 
7277  @return codepoint (0x0000..0xFFFF) or -1 in case of an error (e.g. EOF or
7278  non-hex character)
7279  */
7281  {
7282  // this function only makes sense after reading `\u`
7283  assert(current == 'u');
7284  int codepoint = 0;
7285 
7286  const auto factors = { 12u, 8u, 4u, 0u };
7287  for (const auto factor : factors)
7288  {
7289  get();
7290 
7291  if (current >= '0' and current <= '9')
7292  {
7293  codepoint += static_cast<int>((static_cast<unsigned int>(current) - 0x30u) << factor);
7294  }
7295  else if (current >= 'A' and current <= 'F')
7296  {
7297  codepoint += static_cast<int>((static_cast<unsigned int>(current) - 0x37u) << factor);
7298  }
7299  else if (current >= 'a' and current <= 'f')
7300  {
7301  codepoint += static_cast<int>((static_cast<unsigned int>(current) - 0x57u) << factor);
7302  }
7303  else
7304  {
7305  return -1;
7306  }
7307  }
7308 
7309  assert(0x0000 <= codepoint and codepoint <= 0xFFFF);
7310  return codepoint;
7311  }
7312 
7313  /*!
7314  @brief check if the next byte(s) are inside a given range
7315 
7316  Adds the current byte and, for each passed range, reads a new byte and
7317  checks if it is inside the range. If a violation was detected, set up an
7318  error message and return false. Otherwise, return true.
7319 
7320  @param[in] ranges list of integers; interpreted as list of pairs of
7321  inclusive lower and upper bound, respectively
7322 
7323  @pre The passed list @a ranges must have 2, 4, or 6 elements; that is,
7324  1, 2, or 3 pairs. This precondition is enforced by an assertion.
7325 
7326  @return true if and only if no range violation was detected
7327  */
7328  bool next_byte_in_range(std::initializer_list<int> ranges)
7329  {
7330  assert(ranges.size() == 2 or ranges.size() == 4 or ranges.size() == 6);
7331  add(current);
7332 
7333  for (auto range = ranges.begin(); range != ranges.end(); ++range)
7334  {
7335  get();
7336  if (JSON_HEDLEY_LIKELY(*range <= current and current <= *(++range)))
7337  {
7338  add(current);
7339  }
7340  else
7341  {
7342  error_message = "invalid string: ill-formed UTF-8 byte";
7343  return false;
7344  }
7345  }
7346 
7347  return true;
7348  }
7349 
7350  /*!
7351  @brief scan a string literal
7352 
7353  This function scans a string according to Sect. 7 of RFC 7159. While
7354  scanning, bytes are escaped and copied into buffer token_buffer. Then the
7355  function returns successfully, token_buffer is *not* null-terminated (as it
7356  may contain \0 bytes), and token_buffer.size() is the number of bytes in the
7357  string.
7358 
7359  @return token_type::value_string if string could be successfully scanned,
7360  token_type::parse_error otherwise
7361 
7362  @note In case of errors, variable error_message contains a textual
7363  description.
7364  */
7366  {
7367  // reset token_buffer (ignore opening quote)
7368  reset();
7369 
7370  // we entered the function by reading an open quote
7371  assert(current == '\"');
7372 
7373  while (true)
7374  {
7375  // get next character
7376  switch (get())
7377  {
7378  // end of file while parsing string
7379  case std::char_traits<char>::eof():
7380  {
7381  error_message = "invalid string: missing closing quote";
7382  return token_type::parse_error;
7383  }
7384 
7385  // closing quote
7386  case '\"':
7387  {
7388  return token_type::value_string;
7389  }
7390 
7391  // escapes
7392  case '\\':
7393  {
7394  switch (get())
7395  {
7396  // quotation mark
7397  case '\"':
7398  add('\"');
7399  break;
7400  // reverse solidus
7401  case '\\':
7402  add('\\');
7403  break;
7404  // solidus
7405  case '/':
7406  add('/');
7407  break;
7408  // backspace
7409  case 'b':
7410  add('\b');
7411  break;
7412  // form feed
7413  case 'f':
7414  add('\f');
7415  break;
7416  // line feed
7417  case 'n':
7418  add('\n');
7419  break;
7420  // carriage return
7421  case 'r':
7422  add('\r');
7423  break;
7424  // tab
7425  case 't':
7426  add('\t');
7427  break;
7428 
7429  // unicode escapes
7430  case 'u':
7431  {
7432  const int codepoint1 = get_codepoint();
7433  int codepoint = codepoint1; // start with codepoint1
7434 
7435  if (JSON_HEDLEY_UNLIKELY(codepoint1 == -1))
7436  {
7437  error_message = "invalid string: '\\u' must be followed by 4 hex digits";
7438  return token_type::parse_error;
7439  }
7440 
7441  // check if code point is a high surrogate
7442  if (0xD800 <= codepoint1 and codepoint1 <= 0xDBFF)
7443  {
7444  // expect next \uxxxx entry
7445  if (JSON_HEDLEY_LIKELY(get() == '\\' and get() == 'u'))
7446  {
7447  const int codepoint2 = get_codepoint();
7448 
7449  if (JSON_HEDLEY_UNLIKELY(codepoint2 == -1))
7450  {
7451  error_message = "invalid string: '\\u' must be followed by 4 hex digits";
7452  return token_type::parse_error;
7453  }
7454 
7455  // check if codepoint2 is a low surrogate
7456  if (JSON_HEDLEY_LIKELY(0xDC00 <= codepoint2 and codepoint2 <= 0xDFFF))
7457  {
7458  // overwrite codepoint
7459  codepoint = static_cast<int>(
7460  // high surrogate occupies the most significant 22 bits
7461  (static_cast<unsigned int>(codepoint1) << 10u)
7462  // low surrogate occupies the least significant 15 bits
7463  + static_cast<unsigned int>(codepoint2)
7464  // there is still the 0xD800, 0xDC00 and 0x10000 noise
7465  // in the result so we have to subtract with:
7466  // (0xD800 << 10) + DC00 - 0x10000 = 0x35FDC00
7467  - 0x35FDC00u);
7468  }
7469  else
7470  {
7471  error_message = "invalid string: surrogate U+DC00..U+DFFF must be followed by U+DC00..U+DFFF";
7472  return token_type::parse_error;
7473  }
7474  }
7475  else
7476  {
7477  error_message = "invalid string: surrogate U+DC00..U+DFFF must be followed by U+DC00..U+DFFF";
7478  return token_type::parse_error;
7479  }
7480  }
7481  else
7482  {
7483  if (JSON_HEDLEY_UNLIKELY(0xDC00 <= codepoint1 and codepoint1 <= 0xDFFF))
7484  {
7485  error_message = "invalid string: surrogate U+DC00..U+DFFF must follow U+D800..U+DBFF";
7486  return token_type::parse_error;
7487  }
7488  }
7489 
7490  // result of the above calculation yields a proper codepoint
7491  assert(0x00 <= codepoint and codepoint <= 0x10FFFF);
7492 
7493  // translate codepoint into bytes
7494  if (codepoint < 0x80)
7495  {
7496  // 1-byte characters: 0xxxxxxx (ASCII)
7497  add(codepoint);
7498  }
7499  else if (codepoint <= 0x7FF)
7500  {
7501  // 2-byte characters: 110xxxxx 10xxxxxx
7502  add(static_cast<int>(0xC0u | (static_cast<unsigned int>(codepoint) >> 6u)));
7503  add(static_cast<int>(0x80u | (static_cast<unsigned int>(codepoint) & 0x3Fu)));
7504  }
7505  else if (codepoint <= 0xFFFF)
7506  {
7507  // 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
7508  add(static_cast<int>(0xE0u | (static_cast<unsigned int>(codepoint) >> 12u)));
7509  add(static_cast<int>(0x80u | ((static_cast<unsigned int>(codepoint) >> 6u) & 0x3Fu)));
7510  add(static_cast<int>(0x80u | (static_cast<unsigned int>(codepoint) & 0x3Fu)));
7511  }
7512  else
7513  {
7514  // 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
7515  add(static_cast<int>(0xF0u | (static_cast<unsigned int>(codepoint) >> 18u)));
7516  add(static_cast<int>(0x80u | ((static_cast<unsigned int>(codepoint) >> 12u) & 0x3Fu)));
7517  add(static_cast<int>(0x80u | ((static_cast<unsigned int>(codepoint) >> 6u) & 0x3Fu)));
7518  add(static_cast<int>(0x80u | (static_cast<unsigned int>(codepoint) & 0x3Fu)));
7519  }
7520 
7521  break;
7522  }
7523 
7524  // other characters after escape
7525  default:
7526  error_message = "invalid string: forbidden character after backslash";
7527  return token_type::parse_error;
7528  }
7529 
7530  break;
7531  }
7532 
7533  // invalid control characters
7534  case 0x00:
7535  {
7536  error_message = "invalid string: control character U+0000 (NUL) must be escaped to \\u0000";
7537  return token_type::parse_error;
7538  }
7539 
7540  case 0x01:
7541  {
7542  error_message = "invalid string: control character U+0001 (SOH) must be escaped to \\u0001";
7543  return token_type::parse_error;
7544  }
7545 
7546  case 0x02:
7547  {
7548  error_message = "invalid string: control character U+0002 (STX) must be escaped to \\u0002";
7549  return token_type::parse_error;
7550  }
7551 
7552  case 0x03:
7553  {
7554  error_message = "invalid string: control character U+0003 (ETX) must be escaped to \\u0003";
7555  return token_type::parse_error;
7556  }
7557 
7558  case 0x04:
7559  {
7560  error_message = "invalid string: control character U+0004 (EOT) must be escaped to \\u0004";
7561  return token_type::parse_error;
7562  }
7563 
7564  case 0x05:
7565  {
7566  error_message = "invalid string: control character U+0005 (ENQ) must be escaped to \\u0005";
7567  return token_type::parse_error;
7568  }
7569 
7570  case 0x06:
7571  {
7572  error_message = "invalid string: control character U+0006 (ACK) must be escaped to \\u0006";
7573  return token_type::parse_error;
7574  }
7575 
7576  case 0x07:
7577  {
7578  error_message = "invalid string: control character U+0007 (BEL) must be escaped to \\u0007";
7579  return token_type::parse_error;
7580  }
7581 
7582  case 0x08:
7583  {
7584  error_message = "invalid string: control character U+0008 (BS) must be escaped to \\u0008 or \\b";
7585  return token_type::parse_error;
7586  }
7587 
7588  case 0x09:
7589  {
7590  error_message = "invalid string: control character U+0009 (HT) must be escaped to \\u0009 or \\t";
7591  return token_type::parse_error;
7592  }
7593 
7594  case 0x0A:
7595  {
7596  error_message = "invalid string: control character U+000A (LF) must be escaped to \\u000A or \\n";
7597  return token_type::parse_error;
7598  }
7599 
7600  case 0x0B:
7601  {
7602  error_message = "invalid string: control character U+000B (VT) must be escaped to \\u000B";
7603  return token_type::parse_error;
7604  }
7605 
7606  case 0x0C:
7607  {
7608  error_message = "invalid string: control character U+000C (FF) must be escaped to \\u000C or \\f";
7609  return token_type::parse_error;
7610  }
7611 
7612  case 0x0D:
7613  {
7614  error_message = "invalid string: control character U+000D (CR) must be escaped to \\u000D or \\r";
7615  return token_type::parse_error;
7616  }
7617 
7618  case 0x0E:
7619  {
7620  error_message = "invalid string: control character U+000E (SO) must be escaped to \\u000E";
7621  return token_type::parse_error;
7622  }
7623 
7624  case 0x0F:
7625  {
7626  error_message = "invalid string: control character U+000F (SI) must be escaped to \\u000F";
7627  return token_type::parse_error;
7628  }
7629 
7630  case 0x10:
7631  {
7632  error_message = "invalid string: control character U+0010 (DLE) must be escaped to \\u0010";
7633  return token_type::parse_error;
7634  }
7635 
7636  case 0x11:
7637  {
7638  error_message = "invalid string: control character U+0011 (DC1) must be escaped to \\u0011";
7639  return token_type::parse_error;
7640  }
7641 
7642  case 0x12:
7643  {
7644  error_message = "invalid string: control character U+0012 (DC2) must be escaped to \\u0012";
7645  return token_type::parse_error;
7646  }
7647 
7648  case 0x13:
7649  {
7650  error_message = "invalid string: control character U+0013 (DC3) must be escaped to \\u0013";
7651  return token_type::parse_error;
7652  }
7653 
7654  case 0x14:
7655  {
7656  error_message = "invalid string: control character U+0014 (DC4) must be escaped to \\u0014";
7657  return token_type::parse_error;
7658  }
7659 
7660  case 0x15:
7661  {
7662  error_message = "invalid string: control character U+0015 (NAK) must be escaped to \\u0015";
7663  return token_type::parse_error;
7664  }
7665 
7666  case 0x16:
7667  {
7668  error_message = "invalid string: control character U+0016 (SYN) must be escaped to \\u0016";
7669  return token_type::parse_error;
7670  }
7671 
7672  case 0x17:
7673  {
7674  error_message = "invalid string: control character U+0017 (ETB) must be escaped to \\u0017";
7675  return token_type::parse_error;
7676  }
7677 
7678  case 0x18:
7679  {
7680  error_message = "invalid string: control character U+0018 (CAN) must be escaped to \\u0018";
7681  return token_type::parse_error;
7682  }
7683 
7684  case 0x19:
7685  {
7686  error_message = "invalid string: control character U+0019 (EM) must be escaped to \\u0019";
7687  return token_type::parse_error;
7688  }
7689 
7690  case 0x1A:
7691  {
7692  error_message = "invalid string: control character U+001A (SUB) must be escaped to \\u001A";
7693  return token_type::parse_error;
7694  }
7695 
7696  case 0x1B:
7697  {
7698  error_message = "invalid string: control character U+001B (ESC) must be escaped to \\u001B";
7699  return token_type::parse_error;
7700  }
7701 
7702  case 0x1C:
7703  {
7704  error_message = "invalid string: control character U+001C (FS) must be escaped to \\u001C";
7705  return token_type::parse_error;
7706  }
7707 
7708  case 0x1D:
7709  {
7710  error_message = "invalid string: control character U+001D (GS) must be escaped to \\u001D";
7711  return token_type::parse_error;
7712  }
7713 
7714  case 0x1E:
7715  {
7716  error_message = "invalid string: control character U+001E (RS) must be escaped to \\u001E";
7717  return token_type::parse_error;
7718  }
7719 
7720  case 0x1F:
7721  {
7722  error_message = "invalid string: control character U+001F (US) must be escaped to \\u001F";
7723  return token_type::parse_error;
7724  }
7725 
7726  // U+0020..U+007F (except U+0022 (quote) and U+005C (backspace))
7727  case 0x20:
7728  case 0x21:
7729  case 0x23:
7730  case 0x24:
7731  case 0x25:
7732  case 0x26:
7733  case 0x27:
7734  case 0x28:
7735  case 0x29:
7736  case 0x2A:
7737  case 0x2B:
7738  case 0x2C:
7739  case 0x2D:
7740  case 0x2E:
7741  case 0x2F:
7742  case 0x30:
7743  case 0x31:
7744  case 0x32:
7745  case 0x33:
7746  case 0x34:
7747  case 0x35:
7748  case 0x36:
7749  case 0x37:
7750  case 0x38:
7751  case 0x39:
7752  case 0x3A:
7753  case 0x3B:
7754  case 0x3C:
7755  case 0x3D:
7756  case 0x3E:
7757  case 0x3F:
7758  case 0x40:
7759  case 0x41:
7760  case 0x42:
7761  case 0x43:
7762  case 0x44:
7763  case 0x45:
7764  case 0x46:
7765  case 0x47:
7766  case 0x48:
7767  case 0x49:
7768  case 0x4A:
7769  case 0x4B:
7770  case 0x4C:
7771  case 0x4D:
7772  case 0x4E:
7773  case 0x4F:
7774  case 0x50:
7775  case 0x51:
7776  case 0x52:
7777  case 0x53:
7778  case 0x54:
7779  case 0x55:
7780  case 0x56:
7781  case 0x57:
7782  case 0x58:
7783  case 0x59:
7784  case 0x5A:
7785  case 0x5B:
7786  case 0x5D:
7787  case 0x5E:
7788  case 0x5F:
7789  case 0x60:
7790  case 0x61:
7791  case 0x62:
7792  case 0x63:
7793  case 0x64:
7794  case 0x65:
7795  case 0x66:
7796  case 0x67:
7797  case 0x68:
7798  case 0x69:
7799  case 0x6A:
7800  case 0x6B:
7801  case 0x6C:
7802  case 0x6D:
7803  case 0x6E:
7804  case 0x6F:
7805  case 0x70:
7806  case 0x71:
7807  case 0x72:
7808  case 0x73:
7809  case 0x74:
7810  case 0x75:
7811  case 0x76:
7812  case 0x77:
7813  case 0x78:
7814  case 0x79:
7815  case 0x7A:
7816  case 0x7B:
7817  case 0x7C:
7818  case 0x7D:
7819  case 0x7E:
7820  case 0x7F:
7821  {
7822  add(current);
7823  break;
7824  }
7825 
7826  // U+0080..U+07FF: bytes C2..DF 80..BF
7827  case 0xC2:
7828  case 0xC3:
7829  case 0xC4:
7830  case 0xC5:
7831  case 0xC6:
7832  case 0xC7:
7833  case 0xC8:
7834  case 0xC9:
7835  case 0xCA:
7836  case 0xCB:
7837  case 0xCC:
7838  case 0xCD:
7839  case 0xCE:
7840  case 0xCF:
7841  case 0xD0:
7842  case 0xD1:
7843  case 0xD2:
7844  case 0xD3:
7845  case 0xD4:
7846  case 0xD5:
7847  case 0xD6:
7848  case 0xD7:
7849  case 0xD8:
7850  case 0xD9:
7851  case 0xDA:
7852  case 0xDB:
7853  case 0xDC:
7854  case 0xDD:
7855  case 0xDE:
7856  case 0xDF:
7857  {
7858  if (JSON_HEDLEY_UNLIKELY(not next_byte_in_range({0x80, 0xBF})))
7859  {
7860  return token_type::parse_error;
7861  }
7862  break;
7863  }
7864 
7865  // U+0800..U+0FFF: bytes E0 A0..BF 80..BF
7866  case 0xE0:
7867  {
7868  if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0xA0, 0xBF, 0x80, 0xBF}))))
7869  {
7870  return token_type::parse_error;
7871  }
7872  break;
7873  }
7874 
7875  // U+1000..U+CFFF: bytes E1..EC 80..BF 80..BF
7876  // U+E000..U+FFFF: bytes EE..EF 80..BF 80..BF
7877  case 0xE1:
7878  case 0xE2:
7879  case 0xE3:
7880  case 0xE4:
7881  case 0xE5:
7882  case 0xE6:
7883  case 0xE7:
7884  case 0xE8:
7885  case 0xE9:
7886  case 0xEA:
7887  case 0xEB:
7888  case 0xEC:
7889  case 0xEE:
7890  case 0xEF:
7891  {
7892  if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0x80, 0xBF, 0x80, 0xBF}))))
7893  {
7894  return token_type::parse_error;
7895  }
7896  break;
7897  }
7898 
7899  // U+D000..U+D7FF: bytes ED 80..9F 80..BF
7900  case 0xED:
7901  {
7902  if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0x80, 0x9F, 0x80, 0xBF}))))
7903  {
7904  return token_type::parse_error;
7905  }
7906  break;
7907  }
7908 
7909  // U+10000..U+3FFFF F0 90..BF 80..BF 80..BF
7910  case 0xF0:
7911  {
7912  if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0x90, 0xBF, 0x80, 0xBF, 0x80, 0xBF}))))
7913  {
7914  return token_type::parse_error;
7915  }
7916  break;
7917  }
7918 
7919  // U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
7920  case 0xF1:
7921  case 0xF2:
7922  case 0xF3:
7923  {
7924  if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0x80, 0xBF, 0x80, 0xBF, 0x80, 0xBF}))))
7925  {
7926  return token_type::parse_error;
7927  }
7928  break;
7929  }
7930 
7931  // U+100000..U+10FFFF F4 80..8F 80..BF 80..BF
7932  case 0xF4:
7933  {
7934  if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0x80, 0x8F, 0x80, 0xBF, 0x80, 0xBF}))))
7935  {
7936  return token_type::parse_error;
7937  }
7938  break;
7939  }
7940 
7941  // remaining bytes (80..C1 and F5..FF) are ill-formed
7942  default:
7943  {
7944  error_message = "invalid string: ill-formed UTF-8 byte";
7945  return token_type::parse_error;
7946  }
7947  }
7948  }
7949  }
7950 
7952  static void strtof(float& f, const char* str, char** endptr) noexcept
7953  {
7954  f = std::strtof(str, endptr);
7955  }
7956 
7958  static void strtof(double& f, const char* str, char** endptr) noexcept
7959  {
7960  f = std::strtod(str, endptr);
7961  }
7962 
7964  static void strtof(long double& f, const char* str, char** endptr) noexcept
7965  {
7966  f = std::strtold(str, endptr);
7967  }
7968 
7969  /*!
7970  @brief scan a number literal
7971 
7972  This function scans a string according to Sect. 6 of RFC 7159.
7973 
7974  The function is realized with a deterministic finite state machine derived
7975  from the grammar described in RFC 7159. Starting in state "init", the
7976  input is read and used to determined the next state. Only state "done"
7977  accepts the number. State "error" is a trap state to model errors. In the
7978  table below, "anything" means any character but the ones listed before.
7979 
7980  state | 0 | 1-9 | e E | + | - | . | anything
7981  ---------|----------|----------|----------|---------|---------|----------|-----------
7982  init | zero | any1 | [error] | [error] | minus | [error] | [error]
7983  minus | zero | any1 | [error] | [error] | [error] | [error] | [error]
7984  zero | done | done | exponent | done | done | decimal1 | done
7985  any1 | any1 | any1 | exponent | done | done | decimal1 | done
7986  decimal1 | decimal2 | [error] | [error] | [error] | [error] | [error] | [error]
7987  decimal2 | decimal2 | decimal2 | exponent | done | done | done | done
7988  exponent | any2 | any2 | [error] | sign | sign | [error] | [error]
7989  sign | any2 | any2 | [error] | [error] | [error] | [error] | [error]
7990  any2 | any2 | any2 | done | done | done | done | done
7991 
7992  The state machine is realized with one label per state (prefixed with
7993  "scan_number_") and `goto` statements between them. The state machine
7994  contains cycles, but any cycle can be left when EOF is read. Therefore,
7995  the function is guaranteed to terminate.
7996 
7997  During scanning, the read bytes are stored in token_buffer. This string is
7998  then converted to a signed integer, an unsigned integer, or a
7999  floating-point number.
8000 
8001  @return token_type::value_unsigned, token_type::value_integer, or
8002  token_type::value_float if number could be successfully scanned,
8003  token_type::parse_error otherwise
8004 
8005  @note The scanner is independent of the current locale. Internally, the
8006  locale's decimal point is used instead of `.` to work with the
8007  locale-dependent converters.
8008  */
8009  token_type scan_number() // lgtm [cpp/use-of-goto]
8010  {
8011  // reset token_buffer to store the number's bytes
8012  reset();
8013 
8014  // the type of the parsed number; initially set to unsigned; will be
8015  // changed if minus sign, decimal point or exponent is read
8016  token_type number_type = token_type::value_unsigned;
8017 
8018  // state (init): we just found out we need to scan a number
8019  switch (current)
8020  {
8021  case '-':
8022  {
8023  add(current);
8024  goto scan_number_minus;
8025  }
8026 
8027  case '0':
8028  {
8029  add(current);
8030  goto scan_number_zero;
8031  }
8032 
8033  case '1':
8034  case '2':
8035  case '3':
8036  case '4':
8037  case '5':
8038  case '6':
8039  case '7':
8040  case '8':
8041  case '9':
8042  {
8043  add(current);
8044  goto scan_number_any1;
8045  }
8046 
8047  // all other characters are rejected outside scan_number()
8048  default: // LCOV_EXCL_LINE
8049  assert(false); // LCOV_EXCL_LINE
8050  }
8051 
8052 scan_number_minus:
8053  // state: we just parsed a leading minus sign
8054  number_type = token_type::value_integer;
8055  switch (get())
8056  {
8057  case '0':
8058  {
8059  add(current);
8060  goto scan_number_zero;
8061  }
8062 
8063  case '1':
8064  case '2':
8065  case '3':
8066  case '4':
8067  case '5':
8068  case '6':
8069  case '7':
8070  case '8':
8071  case '9':
8072  {
8073  add(current);
8074  goto scan_number_any1;
8075  }
8076 
8077  default:
8078  {
8079  error_message = "invalid number; expected digit after '-'";
8080  return token_type::parse_error;
8081  }
8082  }
8083 
8084 scan_number_zero:
8085  // state: we just parse a zero (maybe with a leading minus sign)
8086  switch (get())
8087  {
8088  case '.':
8089  {
8090  add(decimal_point_char);
8091  goto scan_number_decimal1;
8092  }
8093 
8094  case 'e':
8095  case 'E':
8096  {
8097  add(current);
8098  goto scan_number_exponent;
8099  }
8100 
8101  default:
8102  goto scan_number_done;
8103  }
8104 
8105 scan_number_any1:
8106  // state: we just parsed a number 0-9 (maybe with a leading minus sign)
8107  switch (get())
8108  {
8109  case '0':
8110  case '1':
8111  case '2':
8112  case '3':
8113  case '4':
8114  case '5':
8115  case '6':
8116  case '7':
8117  case '8':
8118  case '9':
8119  {
8120  add(current);
8121  goto scan_number_any1;
8122  }
8123 
8124  case '.':
8125  {
8126  add(decimal_point_char);
8127  goto scan_number_decimal1;
8128  }
8129 
8130  case 'e':
8131  case 'E':
8132  {
8133  add(current);
8134  goto scan_number_exponent;
8135  }
8136 
8137  default:
8138  goto scan_number_done;
8139  }
8140 
8141 scan_number_decimal1:
8142  // state: we just parsed a decimal point
8143  number_type = token_type::value_float;
8144  switch (get())
8145  {
8146  case '0':
8147  case '1':
8148  case '2':
8149  case '3':
8150  case '4':
8151  case '5':
8152  case '6':
8153  case '7':
8154  case '8':
8155  case '9':
8156  {
8157  add(current);
8158  goto scan_number_decimal2;
8159  }
8160 
8161  default:
8162  {
8163  error_message = "invalid number; expected digit after '.'";
8164  return token_type::parse_error;
8165  }
8166  }
8167 
8168 scan_number_decimal2:
8169  // we just parsed at least one number after a decimal point
8170  switch (get())
8171  {
8172  case '0':
8173  case '1':
8174  case '2':
8175  case '3':
8176  case '4':
8177  case '5':
8178  case '6':
8179  case '7':
8180  case '8':
8181  case '9':
8182  {
8183  add(current);
8184  goto scan_number_decimal2;
8185  }
8186 
8187  case 'e':
8188  case 'E':
8189  {
8190  add(current);
8191  goto scan_number_exponent;
8192  }
8193 
8194  default:
8195  goto scan_number_done;
8196  }
8197 
8198 scan_number_exponent:
8199  // we just parsed an exponent
8200  number_type = token_type::value_float;
8201  switch (get())
8202  {
8203  case '+':
8204  case '-':
8205  {
8206  add(current);
8207  goto scan_number_sign;
8208  }
8209 
8210  case '0':
8211  case '1':
8212  case '2':
8213  case '3':
8214  case '4':
8215  case '5':
8216  case '6':
8217  case '7':
8218  case '8':
8219  case '9':
8220  {
8221  add(current);
8222  goto scan_number_any2;
8223  }
8224 
8225  default:
8226  {
8227  error_message =
8228  "invalid number; expected '+', '-', or digit after exponent";
8229  return token_type::parse_error;
8230  }
8231  }
8232 
8233 scan_number_sign:
8234  // we just parsed an exponent sign
8235  switch (get())
8236  {
8237  case '0':
8238  case '1':
8239  case '2':
8240  case '3':
8241  case '4':
8242  case '5':
8243  case '6':
8244  case '7':
8245  case '8':
8246  case '9':
8247  {
8248  add(current);
8249  goto scan_number_any2;
8250  }
8251 
8252  default:
8253  {
8254  error_message = "invalid number; expected digit after exponent sign";
8255  return token_type::parse_error;
8256  }
8257  }
8258 
8259 scan_number_any2:
8260  // we just parsed a number after the exponent or exponent sign
8261  switch (get())
8262  {
8263  case '0':
8264  case '1':
8265  case '2':
8266  case '3':
8267  case '4':
8268  case '5':
8269  case '6':
8270  case '7':
8271  case '8':
8272  case '9':
8273  {
8274  add(current);
8275  goto scan_number_any2;
8276  }
8277 
8278  default:
8279  goto scan_number_done;
8280  }
8281 
8282 scan_number_done:
8283  // unget the character after the number (we only read it to know that
8284  // we are done scanning a number)
8285  unget();
8286 
8287  char* endptr = nullptr;
8288  errno = 0;
8289 
8290  // try to parse integers first and fall back to floats
8291  if (number_type == token_type::value_unsigned)
8292  {
8293  const auto x = std::strtoull(token_buffer.data(), &endptr, 10);
8294 
8295  // we checked the number format before
8296  assert(endptr == token_buffer.data() + token_buffer.size());
8297 
8298  if (errno == 0)
8299  {
8300  value_unsigned = static_cast<number_unsigned_t>(x);
8301  if (value_unsigned == x)
8302  {
8303  return token_type::value_unsigned;
8304  }
8305  }
8306  }
8307  else if (number_type == token_type::value_integer)
8308  {
8309  const auto x = std::strtoll(token_buffer.data(), &endptr, 10);
8310 
8311  // we checked the number format before
8312  assert(endptr == token_buffer.data() + token_buffer.size());
8313 
8314  if (errno == 0)
8315  {
8316  value_integer = static_cast<number_integer_t>(x);
8317  if (value_integer == x)
8318  {
8319  return token_type::value_integer;
8320  }
8321  }
8322  }
8323 
8324  // this code is reached if we parse a floating-point number or if an
8325  // integer conversion above failed
8326  strtof(value_float, token_buffer.data(), &endptr);
8327 
8328  // we checked the number format before
8329  assert(endptr == token_buffer.data() + token_buffer.size());
8330 
8331  return token_type::value_float;
8332  }
8333 
8334  /*!
8335  @param[in] literal_text the literal text to expect
8336  @param[in] length the length of the passed literal text
8337  @param[in] return_type the token type to return on success
8338  */
8340  token_type scan_literal(const char* literal_text, const std::size_t length,
8341  token_type return_type)
8342  {
8343  assert(current == literal_text[0]);
8344  for (std::size_t i = 1; i < length; ++i)
8345  {
8346  if (JSON_HEDLEY_UNLIKELY(get() != literal_text[i]))
8347  {
8348  error_message = "invalid literal";
8349  return token_type::parse_error;
8350  }
8351  }
8352  return return_type;
8353  }
8354 
8355  /////////////////////
8356  // input management
8357  /////////////////////
8358 
8359  /// reset token_buffer; current character is beginning of token
8360  void reset() noexcept
8361  {
8362  token_buffer.clear();
8363  token_string.clear();
8364  token_string.push_back(std::char_traits<char>::to_char_type(current));
8365  }
8366 
8367  /*
8368  @brief get next character from the input
8369 
8370  This function provides the interface to the used input adapter. It does
8371  not throw in case the input reached EOF, but returns a
8372  `std::char_traits<char>::eof()` in that case. Stores the scanned characters
8373  for use in error messages.
8374 
8375  @return character read from the input
8376  */
8377  std::char_traits<char>::int_type get()
8378  {
8379  ++position.chars_read_total;
8380  ++position.chars_read_current_line;
8381 
8382  if (next_unget)
8383  {
8384  // just reset the next_unget variable and work with current
8385  next_unget = false;
8386  }
8387  else
8388  {
8389  current = ia->get_character();
8390  }
8391 
8392  if (JSON_HEDLEY_LIKELY(current != std::char_traits<char>::eof()))
8393  {
8394  token_string.push_back(std::char_traits<char>::to_char_type(current));
8395  }
8396 
8397  if (current == '\n')
8398  {
8399  ++position.lines_read;
8400  position.chars_read_current_line = 0;
8401  }
8402 
8403  return current;
8404  }
8405 
8406  /*!
8407  @brief unget current character (read it again on next get)
8408 
8409  We implement unget by setting variable next_unget to true. The input is not
8410  changed - we just simulate ungetting by modifying chars_read_total,
8411  chars_read_current_line, and token_string. The next call to get() will
8412  behave as if the unget character is read again.
8413  */
8414  void unget()
8415  {
8416  next_unget = true;
8417 
8418  --position.chars_read_total;
8419 
8420  // in case we "unget" a newline, we have to also decrement the lines_read
8421  if (position.chars_read_current_line == 0)
8422  {
8423  if (position.lines_read > 0)
8424  {
8425  --position.lines_read;
8426  }
8427  }
8428  else
8429  {
8430  --position.chars_read_current_line;
8431  }
8432 
8433  if (JSON_HEDLEY_LIKELY(current != std::char_traits<char>::eof()))
8434  {
8435  assert(not token_string.empty());
8436  token_string.pop_back();
8437  }
8438  }
8439 
8440  /// add a character to token_buffer
8441  void add(int c)
8442  {
8443  token_buffer.push_back(std::char_traits<char>::to_char_type(c));
8444  }
8445 
8446  public:
8447  /////////////////////
8448  // value getters
8449  /////////////////////
8450 
8451  /// return integer value
8453  {
8454  return value_integer;
8455  }
8456 
8457  /// return unsigned integer value
8459  {
8460  return value_unsigned;
8461  }
8462 
8463  /// return floating-point value
8465  {
8466  return value_float;
8467  }
8468 
8469  /// return current string value (implicitly resets the token; useful only once)
8471  {
8472  return token_buffer;
8473  }
8474 
8475  /////////////////////
8476  // diagnostics
8477  /////////////////////
8478 
8479  /// return position of last read token
8480  constexpr position_t get_position() const noexcept
8481  {
8482  return position;
8483  }
8484 
8485  /// return the last read token (for errors only). Will never contain EOF
8486  /// (an arbitrary value that is not a valid char value, often -1), because
8487  /// 255 may legitimately occur. May contain NUL, which should be escaped.
8488  std::string get_token_string() const
8489  {
8490  // escape control characters
8491  std::string result;
8492  for (const auto c : token_string)
8493  {
8494  if ('\x00' <= c and c <= '\x1F')
8495  {
8496  // escape control characters
8497  std::array<char, 9> cs{{}};
8498  (std::snprintf)(cs.data(), cs.size(), "<U+%.4X>", static_cast<unsigned char>(c));
8499  result += cs.data();
8500  }
8501  else
8502  {
8503  // add character as is
8504  result.push_back(c);
8505  }
8506  }
8507 
8508  return result;
8509  }
8510 
8511  /// return syntax error message
8513  constexpr const char* get_error_message() const noexcept
8514  {
8515  return error_message;
8516  }
8517 
8518  /////////////////////
8519  // actual scanner
8520  /////////////////////
8521 
8522  /*!
8523  @brief skip the UTF-8 byte order mark
8524  @return true iff there is no BOM or the correct BOM has been skipped
8525  */
8526  bool skip_bom()
8527  {
8528  if (get() == 0xEF)
8529  {
8530  // check if we completely parse the BOM
8531  return get() == 0xBB and get() == 0xBF;
8532  }
8533 
8534  // the first character is not the beginning of the BOM; unget it to
8535  // process is later
8536  unget();
8537  return true;
8538  }
8539 
8541  {
8542  // initially, skip the BOM
8543  if (position.chars_read_total == 0 and not skip_bom())
8544  {
8545  error_message = "invalid BOM; must be 0xEF 0xBB 0xBF if given";
8546  return token_type::parse_error;
8547  }
8548 
8549  // read next character and ignore whitespace
8550  do
8551  {
8552  get();
8553  }
8554  while (current == ' ' or current == '\t' or current == '\n' or current == '\r');
8555 
8556  switch (current)
8557  {
8558  // structural characters
8559  case '[':
8560  return token_type::begin_array;
8561  case ']':
8562  return token_type::end_array;
8563  case '{':
8564  return token_type::begin_object;
8565  case '}':
8566  return token_type::end_object;
8567  case ':':
8568  return token_type::name_separator;
8569  case ',':
8570  return token_type::value_separator;
8571 
8572  // literals
8573  case 't':
8574  return scan_literal("true", 4, token_type::literal_true);
8575  case 'f':
8576  return scan_literal("false", 5, token_type::literal_false);
8577  case 'n':
8578  return scan_literal("null", 4, token_type::literal_null);
8579 
8580  // string
8581  case '\"':
8582  return scan_string();
8583 
8584  // number
8585  case '-':
8586  case '0':
8587  case '1':
8588  case '2':
8589  case '3':
8590  case '4':
8591  case '5':
8592  case '6':
8593  case '7':
8594  case '8':
8595  case '9':
8596  return scan_number();
8597 
8598  // end of input (the null byte is needed when parsing from
8599  // string literals)
8600  case '\0':
8601  case std::char_traits<char>::eof():
8602  return token_type::end_of_input;
8603 
8604  // error
8605  default:
8606  error_message = "invalid literal";
8607  return token_type::parse_error;
8608  }
8609  }
8610 
8611  private:
8612  /// input adapter
8614 
8615  /// the current character
8616  std::char_traits<char>::int_type current = std::char_traits<char>::eof();
8617 
8618  /// whether the next get() call should just return current
8619  bool next_unget = false;
8620 
8621  /// the start position of the current token
8622  position_t position {};
8623 
8624  /// raw input token string (for error messages)
8625  std::vector<char> token_string {};
8626 
8627  /// buffer for variable-length tokens (numbers, strings)
8628  string_t token_buffer {};
8629 
8630  /// a description of occurred lexer errors
8631  const char* error_message = "";
8632 
8633  // number values
8634  number_integer_t value_integer = 0;
8635  number_unsigned_t value_unsigned = 0;
8636  number_float_t value_float = 0;
8637 
8638  /// the decimal point
8639  const char decimal_point_char = '.';
8640 };
8641 } // namespace detail
8642 } // namespace nlohmann
8643 
8644 // #include <nlohmann/detail/input/parser.hpp>
8645 
8646 
8647 #include <cassert> // assert
8648 #include <cmath> // isfinite
8649 #include <cstdint> // uint8_t
8650 #include <functional> // function
8651 #include <string> // string
8652 #include <utility> // move
8653 #include <vector> // vector
8654 
8655 // #include <nlohmann/detail/exceptions.hpp>
8656 
8657 // #include <nlohmann/detail/input/input_adapters.hpp>
8658 
8659 // #include <nlohmann/detail/input/json_sax.hpp>
8660 
8661 // #include <nlohmann/detail/input/lexer.hpp>
8662 
8663 // #include <nlohmann/detail/macro_scope.hpp>
8664 
8665 // #include <nlohmann/detail/meta/is_sax.hpp>
8666 
8667 // #include <nlohmann/detail/value_t.hpp>
8668 
8669 
8670 namespace nlohmann
8671 {
8672 namespace detail
8673 {
8674 ////////////
8675 // parser //
8676 ////////////
8677 
8678 /*!
8679 @brief syntax analysis
8680 
8681 This class implements a recursive decent parser.
8682 */
8683 template<typename BasicJsonType>
8684 class parser
8685 {
8686  using number_integer_t = typename BasicJsonType::number_integer_t;
8687  using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
8688  using number_float_t = typename BasicJsonType::number_float_t;
8689  using string_t = typename BasicJsonType::string_t;
8692 
8693  public:
8694  enum class parse_event_t : uint8_t
8695  {
8696  /// the parser read `{` and started to process a JSON object
8697  object_start,
8698  /// the parser read `}` and finished processing a JSON object
8699  object_end,
8700  /// the parser read `[` and started to process a JSON array
8701  array_start,
8702  /// the parser read `]` and finished processing a JSON array
8703  array_end,
8704  /// the parser read a key of a value in an object
8705  key,
8706  /// the parser finished reading a JSON value
8707  value
8708  };
8709 
8710  using parser_callback_t =
8711  std::function<bool(int depth, parse_event_t event, BasicJsonType& parsed)>;
8712 
8713  /// a parser reading from an input adapter
8714  explicit parser(detail::input_adapter_t&& adapter,
8715  const parser_callback_t cb = nullptr,
8716  const bool allow_exceptions_ = true)
8717  : callback(cb), m_lexer(std::move(adapter)), allow_exceptions(allow_exceptions_)
8718  {
8719  // read first token
8720  get_token();
8721  }
8722 
8723  /*!
8724  @brief public parser interface
8725 
8726  @param[in] strict whether to expect the last token to be EOF
8727  @param[in,out] result parsed JSON value
8728 
8729  @throw parse_error.101 in case of an unexpected token
8730  @throw parse_error.102 if to_unicode fails or surrogate error
8731  @throw parse_error.103 if to_unicode fails
8732  */
8733  void parse(const bool strict, BasicJsonType& result)
8734  {
8735  if (callback)
8736  {
8737  json_sax_dom_callback_parser<BasicJsonType> sdp(result, callback, allow_exceptions);
8738  sax_parse_internal(&sdp);
8739  result.assert_invariant();
8740 
8741  // in strict mode, input must be completely read
8742  if (strict and (get_token() != token_type::end_of_input))
8743  {
8744  sdp.parse_error(m_lexer.get_position(),
8745  m_lexer.get_token_string(),
8746  parse_error::create(101, m_lexer.get_position(),
8747  exception_message(token_type::end_of_input, "value")));
8748  }
8749 
8750  // in case of an error, return discarded value
8751  if (sdp.is_errored())
8752  {
8753  result = value_t::discarded;
8754  return;
8755  }
8756 
8757  // set top-level value to null if it was discarded by the callback
8758  // function
8759  if (result.is_discarded())
8760  {
8761  result = nullptr;
8762  }
8763  }
8764  else
8765  {
8766  json_sax_dom_parser<BasicJsonType> sdp(result, allow_exceptions);
8767  sax_parse_internal(&sdp);
8768  result.assert_invariant();
8769 
8770  // in strict mode, input must be completely read
8771  if (strict and (get_token() != token_type::end_of_input))
8772  {
8773  sdp.parse_error(m_lexer.get_position(),
8774  m_lexer.get_token_string(),
8775  parse_error::create(101, m_lexer.get_position(),
8776  exception_message(token_type::end_of_input, "value")));
8777  }
8778 
8779  // in case of an error, return discarded value
8780  if (sdp.is_errored())
8781  {
8782  result = value_t::discarded;
8783  return;
8784  }
8785  }
8786  }
8787 
8788  /*!
8789  @brief public accept interface
8790 
8791  @param[in] strict whether to expect the last token to be EOF
8792  @return whether the input is a proper JSON text
8793  */
8794  bool accept(const bool strict = true)
8795  {
8796  json_sax_acceptor<BasicJsonType> sax_acceptor;
8797  return sax_parse(&sax_acceptor, strict);
8798  }
8799 
8800  template <typename SAX>
8802  bool sax_parse(SAX* sax, const bool strict = true)
8803  {
8805  const bool result = sax_parse_internal(sax);
8806 
8807  // strict mode: next byte must be EOF
8808  if (result and strict and (get_token() != token_type::end_of_input))
8809  {
8810  return sax->parse_error(m_lexer.get_position(),
8811  m_lexer.get_token_string(),
8812  parse_error::create(101, m_lexer.get_position(),
8813  exception_message(token_type::end_of_input, "value")));
8814  }
8815 
8816  return result;
8817  }
8818 
8819  private:
8820  template <typename SAX>
8822  bool sax_parse_internal(SAX* sax)
8823  {
8824  // stack to remember the hierarchy of structured values we are parsing
8825  // true = array; false = object
8826  std::vector<bool> states;
8827  // value to avoid a goto (see comment where set to true)
8828  bool skip_to_state_evaluation = false;
8829 
8830  while (true)
8831  {
8832  if (not skip_to_state_evaluation)
8833  {
8834  // invariant: get_token() was called before each iteration
8835  switch (last_token)
8836  {
8837  case token_type::begin_object:
8838  {
8839  if (JSON_HEDLEY_UNLIKELY(not sax->start_object(std::size_t(-1))))
8840  {
8841  return false;
8842  }
8843 
8844  // closing } -> we are done
8845  if (get_token() == token_type::end_object)
8846  {
8847  if (JSON_HEDLEY_UNLIKELY(not sax->end_object()))
8848  {
8849  return false;
8850  }
8851  break;
8852  }
8853 
8854  // parse key
8855  if (JSON_HEDLEY_UNLIKELY(last_token != token_type::value_string))
8856  {
8857  return sax->parse_error(m_lexer.get_position(),
8858  m_lexer.get_token_string(),
8859  parse_error::create(101, m_lexer.get_position(),
8860  exception_message(token_type::value_string, "object key")));
8861  }
8862  if (JSON_HEDLEY_UNLIKELY(not sax->key(m_lexer.get_string())))
8863  {
8864  return false;
8865  }
8866 
8867  // parse separator (:)
8868  if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::name_separator))
8869  {
8870  return sax->parse_error(m_lexer.get_position(),
8871  m_lexer.get_token_string(),
8872  parse_error::create(101, m_lexer.get_position(),
8873  exception_message(token_type::name_separator, "object separator")));
8874  }
8875 
8876  // remember we are now inside an object
8877  states.push_back(false);
8878 
8879  // parse values
8880  get_token();
8881  continue;
8882  }
8883 
8884  case token_type::begin_array:
8885  {
8886  if (JSON_HEDLEY_UNLIKELY(not sax->start_array(std::size_t(-1))))
8887  {
8888  return false;
8889  }
8890 
8891  // closing ] -> we are done
8892  if (get_token() == token_type::end_array)
8893  {
8894  if (JSON_HEDLEY_UNLIKELY(not sax->end_array()))
8895  {
8896  return false;
8897  }
8898  break;
8899  }
8900 
8901  // remember we are now inside an array
8902  states.push_back(true);
8903 
8904  // parse values (no need to call get_token)
8905  continue;
8906  }
8907 
8908  case token_type::value_float:
8909  {
8910  const auto res = m_lexer.get_number_float();
8911 
8912  if (JSON_HEDLEY_UNLIKELY(not std::isfinite(res)))
8913  {
8914  return sax->parse_error(m_lexer.get_position(),
8915  m_lexer.get_token_string(),
8916  out_of_range::create(406, "number overflow parsing '" + m_lexer.get_token_string() + "'"));
8917  }
8918 
8919  if (JSON_HEDLEY_UNLIKELY(not sax->number_float(res, m_lexer.get_string())))
8920  {
8921  return false;
8922  }
8923 
8924  break;
8925  }
8926 
8927  case token_type::literal_false:
8928  {
8929  if (JSON_HEDLEY_UNLIKELY(not sax->boolean(false)))
8930  {
8931  return false;
8932  }
8933  break;
8934  }
8935 
8936  case token_type::literal_null:
8937  {
8938  if (JSON_HEDLEY_UNLIKELY(not sax->null()))
8939  {
8940  return false;
8941  }
8942  break;
8943  }
8944 
8945  case token_type::literal_true:
8946  {
8947  if (JSON_HEDLEY_UNLIKELY(not sax->boolean(true)))
8948  {
8949  return false;
8950  }
8951  break;
8952  }
8953 
8954  case token_type::value_integer:
8955  {
8956  if (JSON_HEDLEY_UNLIKELY(not sax->number_integer(m_lexer.get_number_integer())))
8957  {
8958  return false;
8959  }
8960  break;
8961  }
8962 
8963  case token_type::value_string:
8964  {
8965  if (JSON_HEDLEY_UNLIKELY(not sax->string(m_lexer.get_string())))
8966  {
8967  return false;
8968  }
8969  break;
8970  }
8971 
8972  case token_type::value_unsigned:
8973  {
8974  if (JSON_HEDLEY_UNLIKELY(not sax->number_unsigned(m_lexer.get_number_unsigned())))
8975  {
8976  return false;
8977  }
8978  break;
8979  }
8980 
8981  case token_type::parse_error:
8982  {
8983  // using "uninitialized" to avoid "expected" message
8984  return sax->parse_error(m_lexer.get_position(),
8985  m_lexer.get_token_string(),
8986  parse_error::create(101, m_lexer.get_position(),
8987  exception_message(token_type::uninitialized, "value")));
8988  }
8989 
8990  default: // the last token was unexpected
8991  {
8992  return sax->parse_error(m_lexer.get_position(),
8993  m_lexer.get_token_string(),
8994  parse_error::create(101, m_lexer.get_position(),
8995  exception_message(token_type::literal_or_value, "value")));
8996  }
8997  }
8998  }
8999  else
9000  {
9001  skip_to_state_evaluation = false;
9002  }
9003 
9004  // we reached this line after we successfully parsed a value
9005  if (states.empty())
9006  {
9007  // empty stack: we reached the end of the hierarchy: done
9008  return true;
9009  }
9010 
9011  if (states.back()) // array
9012  {
9013  // comma -> next value
9014  if (get_token() == token_type::value_separator)
9015  {
9016  // parse a new value
9017  get_token();
9018  continue;
9019  }
9020 
9021  // closing ]
9022  if (JSON_HEDLEY_LIKELY(last_token == token_type::end_array))
9023  {
9024  if (JSON_HEDLEY_UNLIKELY(not sax->end_array()))
9025  {
9026  return false;
9027  }
9028 
9029  // We are done with this array. Before we can parse a
9030  // new value, we need to evaluate the new state first.
9031  // By setting skip_to_state_evaluation to false, we
9032  // are effectively jumping to the beginning of this if.
9033  assert(not states.empty());
9034  states.pop_back();
9035  skip_to_state_evaluation = true;
9036  continue;
9037  }
9038 
9039  return sax->parse_error(m_lexer.get_position(),
9040  m_lexer.get_token_string(),
9041  parse_error::create(101, m_lexer.get_position(),
9042  exception_message(token_type::end_array, "array")));
9043  }
9044  else // object
9045  {
9046  // comma -> next value
9047  if (get_token() == token_type::value_separator)
9048  {
9049  // parse key
9050  if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::value_string))
9051  {
9052  return sax->parse_error(m_lexer.get_position(),
9053  m_lexer.get_token_string(),
9054  parse_error::create(101, m_lexer.get_position(),
9055  exception_message(token_type::value_string, "object key")));
9056  }
9057 
9058  if (JSON_HEDLEY_UNLIKELY(not sax->key(m_lexer.get_string())))
9059  {
9060  return false;
9061  }
9062 
9063  // parse separator (:)
9064  if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::name_separator))
9065  {
9066  return sax->parse_error(m_lexer.get_position(),
9067  m_lexer.get_token_string(),
9068  parse_error::create(101, m_lexer.get_position(),
9069  exception_message(token_type::name_separator, "object separator")));
9070  }
9071 
9072  // parse values
9073  get_token();
9074  continue;
9075  }
9076 
9077  // closing }
9078  if (JSON_HEDLEY_LIKELY(last_token == token_type::end_object))
9079  {
9080  if (JSON_HEDLEY_UNLIKELY(not sax->end_object()))
9081  {
9082  return false;
9083  }
9084 
9085  // We are done with this object. Before we can parse a
9086  // new value, we need to evaluate the new state first.
9087  // By setting skip_to_state_evaluation to false, we
9088  // are effectively jumping to the beginning of this if.
9089  assert(not states.empty());
9090  states.pop_back();
9091  skip_to_state_evaluation = true;
9092  continue;
9093  }
9094 
9095  return sax->parse_error(m_lexer.get_position(),
9096  m_lexer.get_token_string(),
9097  parse_error::create(101, m_lexer.get_position(),
9098  exception_message(token_type::end_object, "object")));
9099  }
9100  }
9101  }
9102 
9103  /// get next token from lexer
9105  {
9106  return last_token = m_lexer.scan();
9107  }
9108 
9109  std::string exception_message(const token_type expected, const std::string& context)
9110  {
9111  std::string error_msg = "syntax error ";
9112 
9113  if (not context.empty())
9114  {
9115  error_msg += "while parsing " + context + " ";
9116  }
9117 
9118  error_msg += "- ";
9119 
9120  if (last_token == token_type::parse_error)
9121  {
9122  error_msg += std::string(m_lexer.get_error_message()) + "; last read: '" +
9123  m_lexer.get_token_string() + "'";
9124  }
9125  else
9126  {
9127  error_msg += "unexpected " + std::string(lexer_t::token_type_name(last_token));
9128  }
9129 
9130  if (expected != token_type::uninitialized)
9131  {
9132  error_msg += "; expected " + std::string(lexer_t::token_type_name(expected));
9133  }
9134 
9135  return error_msg;
9136  }
9137 
9138  private:
9139  /// callback function
9140  const parser_callback_t callback = nullptr;
9141  /// the type of the last read token
9142  token_type last_token = token_type::uninitialized;
9143  /// the lexer
9145  /// whether to throw exceptions in case of errors
9146  const bool allow_exceptions = true;
9147 };
9148 } // namespace detail
9149 } // namespace nlohmann
9150 
9151 // #include <nlohmann/detail/iterators/internal_iterator.hpp>
9152 
9153 
9154 // #include <nlohmann/detail/iterators/primitive_iterator.hpp>
9155 
9156 
9157 #include <cstddef> // ptrdiff_t
9158 #include <limits> // numeric_limits
9159 
9160 namespace nlohmann
9161 {
9162 namespace detail
9163 {
9164 /*
9165 @brief an iterator for primitive JSON types
9166 
9167 This class models an iterator for primitive JSON types (boolean, number,
9168 string). It's only purpose is to allow the iterator/const_iterator classes
9169 to "iterate" over primitive values. Internally, the iterator is modeled by
9170 a `difference_type` variable. Value begin_value (`0`) models the begin,
9171 end_value (`1`) models past the end.
9172 */
9174 {
9175  private:
9176  using difference_type = std::ptrdiff_t;
9177  static constexpr difference_type begin_value = 0;
9178  static constexpr difference_type end_value = begin_value + 1;
9179 
9180  /// iterator as signed integer type
9181  difference_type m_it = (std::numeric_limits<std::ptrdiff_t>::min)();
9182 
9183  public:
9184  constexpr difference_type get_value() const noexcept
9185  {
9186  return m_it;
9187  }
9188 
9189  /// set iterator to a defined beginning
9190  void set_begin() noexcept
9191  {
9192  m_it = begin_value;
9193  }
9194 
9195  /// set iterator to a defined past the end
9196  void set_end() noexcept
9197  {
9198  m_it = end_value;
9199  }
9200 
9201  /// return whether the iterator can be dereferenced
9202  constexpr bool is_begin() const noexcept
9203  {
9204  return m_it == begin_value;
9205  }
9206 
9207  /// return whether the iterator is at end
9208  constexpr bool is_end() const noexcept
9209  {
9210  return m_it == end_value;
9211  }
9212 
9213  friend constexpr bool operator==(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
9214  {
9215  return lhs.m_it == rhs.m_it;
9216  }
9217 
9218  friend constexpr bool operator<(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
9219  {
9220  return lhs.m_it < rhs.m_it;
9221  }
9222 
9224  {
9225  auto result = *this;
9226  result += n;
9227  return result;
9228  }
9229 
9231  {
9232  return lhs.m_it - rhs.m_it;
9233  }
9234 
9236  {
9237  ++m_it;
9238  return *this;
9239  }
9240 
9241  primitive_iterator_t const operator++(int) noexcept
9242  {
9243  auto result = *this;
9244  ++m_it;
9245  return result;
9246  }
9247 
9249  {
9250  --m_it;
9251  return *this;
9252  }
9253 
9254  primitive_iterator_t const operator--(int) noexcept
9255  {
9256  auto result = *this;
9257  --m_it;
9258  return result;
9259  }
9260 
9262  {
9263  m_it += n;
9264  return *this;
9265  }
9266 
9268  {
9269  m_it -= n;
9270  return *this;
9271  }
9272 };
9273 } // namespace detail
9274 } // namespace nlohmann
9275 
9276 
9277 namespace nlohmann
9278 {
9279 namespace detail
9280 {
9281 /*!
9282 @brief an iterator value
9283 
9284 @note This structure could easily be a union, but MSVC currently does not allow
9285 unions members with complex constructors, see https://github.com/nlohmann/json/pull/105.
9286 */
9287 template<typename BasicJsonType> struct internal_iterator
9288 {
9289  /// iterator for JSON objects
9290  typename BasicJsonType::object_t::iterator object_iterator {};
9291  /// iterator for JSON arrays
9292  typename BasicJsonType::array_t::iterator array_iterator {};
9293  /// generic iterator for all other types
9294  primitive_iterator_t primitive_iterator {};
9295 };
9296 } // namespace detail
9297 } // namespace nlohmann
9298 
9299 // #include <nlohmann/detail/iterators/iter_impl.hpp>
9300 
9301 
9302 #include <ciso646> // not
9303 #include <iterator> // iterator, random_access_iterator_tag, bidirectional_iterator_tag, advance, next
9304 #include <type_traits> // conditional, is_const, remove_const
9305 
9306 // #include <nlohmann/detail/exceptions.hpp>
9307 
9308 // #include <nlohmann/detail/iterators/internal_iterator.hpp>
9309 
9310 // #include <nlohmann/detail/iterators/primitive_iterator.hpp>
9311 
9312 // #include <nlohmann/detail/macro_scope.hpp>
9313 
9314 // #include <nlohmann/detail/meta/cpp_future.hpp>
9315 
9316 // #include <nlohmann/detail/meta/type_traits.hpp>
9317 
9318 // #include <nlohmann/detail/value_t.hpp>
9319 
9320 
9321 namespace nlohmann
9322 {
9323 namespace detail
9324 {
9325 // forward declare, to be able to friend it later on
9326 template<typename IteratorType> class iteration_proxy;
9327 template<typename IteratorType> class iteration_proxy_value;
9328 
9329 /*!
9330 @brief a template for a bidirectional iterator for the @ref basic_json class
9331 This class implements a both iterators (iterator and const_iterator) for the
9332 @ref basic_json class.
9333 @note An iterator is called *initialized* when a pointer to a JSON value has
9334  been set (e.g., by a constructor or a copy assignment). If the iterator is
9335  default-constructed, it is *uninitialized* and most methods are undefined.
9336  **The library uses assertions to detect calls on uninitialized iterators.**
9337 @requirement The class satisfies the following concept requirements:
9338 -
9339 [BidirectionalIterator](https://en.cppreference.com/w/cpp/named_req/BidirectionalIterator):
9340  The iterator that can be moved can be moved in both directions (i.e.
9341  incremented and decremented).
9342 @since version 1.0.0, simplified in version 2.0.9, change to bidirectional
9343  iterators in version 3.0.0 (see https://github.com/nlohmann/json/issues/593)
9344 */
9345 template<typename BasicJsonType>
9347 {
9348  /// allow basic_json to access private members
9353 
9354  using object_t = typename BasicJsonType::object_t;
9355  using array_t = typename BasicJsonType::array_t;
9356  // make sure BasicJsonType is basic_json or const basic_json
9358  "iter_impl only accepts (const) basic_json");
9359 
9360  public:
9361 
9362  /// The std::iterator class template (used as a base class to provide typedefs) is deprecated in C++17.
9363  /// The C++ Standard has never required user-defined iterators to derive from std::iterator.
9364  /// A user-defined iterator should provide publicly accessible typedefs named
9365  /// iterator_category, value_type, difference_type, pointer, and reference.
9366  /// Note that value_type is required to be non-const, even for constant iterators.
9367  using iterator_category = std::bidirectional_iterator_tag;
9368 
9369  /// the type of the values when the iterator is dereferenced
9370  using value_type = typename BasicJsonType::value_type;
9371  /// a type to represent differences between iterators
9372  using difference_type = typename BasicJsonType::difference_type;
9373  /// defines a pointer to the type iterated over (value_type)
9375  typename BasicJsonType::const_pointer,
9376  typename BasicJsonType::pointer>::type;
9377  /// defines a reference to the type iterated over (value_type)
9378  using reference =
9380  typename BasicJsonType::const_reference,
9381  typename BasicJsonType::reference>::type;
9382 
9383  /// default constructor
9384  iter_impl() = default;
9385 
9386  /*!
9387  @brief constructor for a given JSON instance
9388  @param[in] object pointer to a JSON object for this iterator
9389  @pre object != nullptr
9390  @post The iterator is initialized; i.e. `m_object != nullptr`.
9391  */
9392  explicit iter_impl(pointer object) noexcept : m_object(object)
9393  {
9394  assert(m_object != nullptr);
9395 
9396  switch (m_object->m_type)
9397  {
9398  case value_t::object:
9399  {
9400  m_it.object_iterator = typename object_t::iterator();
9401  break;
9402  }
9403 
9404  case value_t::array:
9405  {
9406  m_it.array_iterator = typename array_t::iterator();
9407  break;
9408  }
9409 
9410  default:
9411  {
9412  m_it.primitive_iterator = primitive_iterator_t();
9413  break;
9414  }
9415  }
9416  }
9417 
9418  /*!
9419  @note The conventional copy constructor and copy assignment are implicitly
9420  defined. Combined with the following converting constructor and
9421  assignment, they support: (1) copy from iterator to iterator, (2)
9422  copy from const iterator to const iterator, and (3) conversion from
9423  iterator to const iterator. However conversion from const iterator
9424  to iterator is not defined.
9425  */
9426 
9427  /*!
9428  @brief const copy constructor
9429  @param[in] other const iterator to copy from
9430  @note This copy constructor had to be defined explicitly to circumvent a bug
9431  occurring on msvc v19.0 compiler (VS 2015) debug build. For more
9432  information refer to: https://github.com/nlohmann/json/issues/1608
9433  */
9435  : m_object(other.m_object), m_it(other.m_it)
9436  {}
9437 
9438  /*!
9439  @brief converting assignment
9440  @param[in] other const iterator to copy from
9441  @return const/non-const iterator
9442  @note It is not checked whether @a other is initialized.
9443  */
9445  {
9446  m_object = other.m_object;
9447  m_it = other.m_it;
9448  return *this;
9449  }
9450 
9451  /*!
9452  @brief converting constructor
9453  @param[in] other non-const iterator to copy from
9454  @note It is not checked whether @a other is initialized.
9455  */
9457  : m_object(other.m_object), m_it(other.m_it)
9458  {}
9459 
9460  /*!
9461  @brief converting assignment
9462  @param[in] other non-const iterator to copy from
9463  @return const/non-const iterator
9464  @note It is not checked whether @a other is initialized.
9465  */
9467  {
9468  m_object = other.m_object;
9469  m_it = other.m_it;
9470  return *this;
9471  }
9472 
9473  private:
9474  /*!
9475  @brief set the iterator to the first value
9476  @pre The iterator is initialized; i.e. `m_object != nullptr`.
9477  */
9478  void set_begin() noexcept
9479  {
9480  assert(m_object != nullptr);
9481 
9482  switch (m_object->m_type)
9483  {
9484  case value_t::object:
9485  {
9486  m_it.object_iterator = m_object->m_value.object->begin();
9487  break;
9488  }
9489 
9490  case value_t::array:
9491  {
9492  m_it.array_iterator = m_object->m_value.array->begin();
9493  break;
9494  }
9495 
9496  case value_t::null:
9497  {
9498  // set to end so begin()==end() is true: null is empty
9499  m_it.primitive_iterator.set_end();
9500  break;
9501  }
9502 
9503  default:
9504  {
9505  m_it.primitive_iterator.set_begin();
9506  break;
9507  }
9508  }
9509  }
9510 
9511  /*!
9512  @brief set the iterator past the last value
9513  @pre The iterator is initialized; i.e. `m_object != nullptr`.
9514  */
9515  void set_end() noexcept
9516  {
9517  assert(m_object != nullptr);
9518 
9519  switch (m_object->m_type)
9520  {
9521  case value_t::object:
9522  {
9523  m_it.object_iterator = m_object->m_value.object->end();
9524  break;
9525  }
9526 
9527  case value_t::array:
9528  {
9529  m_it.array_iterator = m_object->m_value.array->end();
9530  break;
9531  }
9532 
9533  default:
9534  {
9535  m_it.primitive_iterator.set_end();
9536  break;
9537  }
9538  }
9539  }
9540 
9541  public:
9542  /*!
9543  @brief return a reference to the value pointed to by the iterator
9544  @pre The iterator is initialized; i.e. `m_object != nullptr`.
9545  */
9547  {
9548  assert(m_object != nullptr);
9549 
9550  switch (m_object->m_type)
9551  {
9552  case value_t::object:
9553  {
9554  assert(m_it.object_iterator != m_object->m_value.object->end());
9555  return m_it.object_iterator->second;
9556  }
9557 
9558  case value_t::array:
9559  {
9560  assert(m_it.array_iterator != m_object->m_value.array->end());
9561  return *m_it.array_iterator;
9562  }
9563 
9564  case value_t::null:
9565  JSON_THROW(invalid_iterator::create(214, "cannot get value"));
9566 
9567  default:
9568  {
9569  if (JSON_HEDLEY_LIKELY(m_it.primitive_iterator.is_begin()))
9570  {
9571  return *m_object;
9572  }
9573 
9574  JSON_THROW(invalid_iterator::create(214, "cannot get value"));
9575  }
9576  }
9577  }
9578 
9579  /*!
9580  @brief dereference the iterator
9581  @pre The iterator is initialized; i.e. `m_object != nullptr`.
9582  */
9584  {
9585  assert(m_object != nullptr);
9586 
9587  switch (m_object->m_type)
9588  {
9589  case value_t::object:
9590  {
9591  assert(m_it.object_iterator != m_object->m_value.object->end());
9592  return &(m_it.object_iterator->second);
9593  }
9594 
9595  case value_t::array:
9596  {
9597  assert(m_it.array_iterator != m_object->m_value.array->end());
9598  return &*m_it.array_iterator;
9599  }
9600 
9601  default:
9602  {
9603  if (JSON_HEDLEY_LIKELY(m_it.primitive_iterator.is_begin()))
9604  {
9605  return m_object;
9606  }
9607 
9608  JSON_THROW(invalid_iterator::create(214, "cannot get value"));
9609  }
9610  }
9611  }
9612 
9613  /*!
9614  @brief post-increment (it++)
9615  @pre The iterator is initialized; i.e. `m_object != nullptr`.
9616  */
9618  {
9619  auto result = *this;
9620  ++(*this);
9621  return result;
9622  }
9623 
9624  /*!
9625  @brief pre-increment (++it)
9626  @pre The iterator is initialized; i.e. `m_object != nullptr`.
9627  */
9629  {
9630  assert(m_object != nullptr);
9631 
9632  switch (m_object->m_type)
9633  {
9634  case value_t::object:
9635  {
9636  std::advance(m_it.object_iterator, 1);
9637  break;
9638  }
9639 
9640  case value_t::array:
9641  {
9642  std::advance(m_it.array_iterator, 1);
9643  break;
9644  }
9645 
9646  default:
9647  {
9648  ++m_it.primitive_iterator;
9649  break;
9650  }
9651  }
9652 
9653  return *this;
9654  }
9655 
9656  /*!
9657  @brief post-decrement (it--)
9658  @pre The iterator is initialized; i.e. `m_object != nullptr`.
9659  */
9661  {
9662  auto result = *this;
9663  --(*this);
9664  return result;
9665  }
9666 
9667  /*!
9668  @brief pre-decrement (--it)
9669  @pre The iterator is initialized; i.e. `m_object != nullptr`.
9670  */
9672  {
9673  assert(m_object != nullptr);
9674 
9675  switch (m_object->m_type)
9676  {
9677  case value_t::object:
9678  {
9679  std::advance(m_it.object_iterator, -1);
9680  break;
9681  }
9682 
9683  case value_t::array:
9684  {
9685  std::advance(m_it.array_iterator, -1);
9686  break;
9687  }
9688 
9689  default:
9690  {
9691  --m_it.primitive_iterator;
9692  break;
9693  }
9694  }
9695 
9696  return *this;
9697  }
9698 
9699  /*!
9700  @brief comparison: equal
9701  @pre The iterator is initialized; i.e. `m_object != nullptr`.
9702  */
9703  bool operator==(const iter_impl& other) const
9704  {
9705  // if objects are not the same, the comparison is undefined
9706  if (JSON_HEDLEY_UNLIKELY(m_object != other.m_object))
9707  {
9708  JSON_THROW(invalid_iterator::create(212, "cannot compare iterators of different containers"));
9709  }
9710 
9711  assert(m_object != nullptr);
9712 
9713  switch (m_object->m_type)
9714  {
9715  case value_t::object:
9716  return (m_it.object_iterator == other.m_it.object_iterator);
9717 
9718  case value_t::array:
9719  return (m_it.array_iterator == other.m_it.array_iterator);
9720 
9721  default:
9722  return (m_it.primitive_iterator == other.m_it.primitive_iterator);
9723  }
9724  }
9725 
9726  /*!
9727  @brief comparison: not equal
9728  @pre The iterator is initialized; i.e. `m_object != nullptr`.
9729  */
9730  bool operator!=(const iter_impl& other) const
9731  {
9732  return not operator==(other);
9733  }
9734 
9735  /*!
9736  @brief comparison: smaller
9737  @pre The iterator is initialized; i.e. `m_object != nullptr`.
9738  */
9739  bool operator<(const iter_impl& other) const
9740  {
9741  // if objects are not the same, the comparison is undefined
9742  if (JSON_HEDLEY_UNLIKELY(m_object != other.m_object))
9743  {
9744  JSON_THROW(invalid_iterator::create(212, "cannot compare iterators of different containers"));
9745  }
9746 
9747  assert(m_object != nullptr);
9748 
9749  switch (m_object->m_type)
9750  {
9751  case value_t::object:
9752  JSON_THROW(invalid_iterator::create(213, "cannot compare order of object iterators"));
9753 
9754  case value_t::array:
9755  return (m_it.array_iterator < other.m_it.array_iterator);
9756 
9757  default:
9758  return (m_it.primitive_iterator < other.m_it.primitive_iterator);
9759  }
9760  }
9761 
9762  /*!
9763  @brief comparison: less than or equal
9764  @pre The iterator is initialized; i.e. `m_object != nullptr`.
9765  */
9766  bool operator<=(const iter_impl& other) const
9767  {
9768  return not other.operator < (*this);
9769  }
9770 
9771  /*!
9772  @brief comparison: greater than
9773  @pre The iterator is initialized; i.e. `m_object != nullptr`.
9774  */
9775  bool operator>(const iter_impl& other) const
9776  {
9777  return not operator<=(other);
9778  }
9779 
9780  /*!
9781  @brief comparison: greater than or equal
9782  @pre The iterator is initialized; i.e. `m_object != nullptr`.
9783  */
9784  bool operator>=(const iter_impl& other) const
9785  {
9786  return not operator<(other);
9787  }
9788 
9789  /*!
9790  @brief add to iterator
9791  @pre The iterator is initialized; i.e. `m_object != nullptr`.
9792  */
9794  {
9795  assert(m_object != nullptr);
9796 
9797  switch (m_object->m_type)
9798  {
9799  case value_t::object:
9800  JSON_THROW(invalid_iterator::create(209, "cannot use offsets with object iterators"));
9801 
9802  case value_t::array:
9803  {
9804  std::advance(m_it.array_iterator, i);
9805  break;
9806  }
9807 
9808  default:
9809  {
9810  m_it.primitive_iterator += i;
9811  break;
9812  }
9813  }
9814 
9815  return *this;
9816  }
9817 
9818  /*!
9819  @brief subtract from iterator
9820  @pre The iterator is initialized; i.e. `m_object != nullptr`.
9821  */
9823  {
9824  return operator+=(-i);
9825  }
9826 
9827  /*!
9828  @brief add to iterator
9829  @pre The iterator is initialized; i.e. `m_object != nullptr`.
9830  */
9832  {
9833  auto result = *this;
9834  result += i;
9835  return result;
9836  }
9837 
9838  /*!
9839  @brief addition of distance and iterator
9840  @pre The iterator is initialized; i.e. `m_object != nullptr`.
9841  */
9843  {
9844  auto result = it;
9845  result += i;
9846  return result;
9847  }
9848 
9849  /*!
9850  @brief subtract from iterator
9851  @pre The iterator is initialized; i.e. `m_object != nullptr`.
9852  */
9854  {
9855  auto result = *this;
9856  result -= i;
9857  return result;
9858  }
9859 
9860  /*!
9861  @brief return difference
9862  @pre The iterator is initialized; i.e. `m_object != nullptr`.
9863  */
9865  {
9866  assert(m_object != nullptr);
9867 
9868  switch (m_object->m_type)
9869  {
9870  case value_t::object:
9871  JSON_THROW(invalid_iterator::create(209, "cannot use offsets with object iterators"));
9872 
9873  case value_t::array:
9874  return m_it.array_iterator - other.m_it.array_iterator;
9875 
9876  default:
9877  return m_it.primitive_iterator - other.m_it.primitive_iterator;
9878  }
9879  }
9880 
9881  /*!
9882  @brief access to successor
9883  @pre The iterator is initialized; i.e. `m_object != nullptr`.
9884  */
9886  {
9887  assert(m_object != nullptr);
9888 
9889  switch (m_object->m_type)
9890  {
9891  case value_t::object:
9892  JSON_THROW(invalid_iterator::create(208, "cannot use operator[] for object iterators"));
9893 
9894  case value_t::array:
9895  return *std::next(m_it.array_iterator, n);
9896 
9897  case value_t::null:
9898  JSON_THROW(invalid_iterator::create(214, "cannot get value"));
9899 
9900  default:
9901  {
9902  if (JSON_HEDLEY_LIKELY(m_it.primitive_iterator.get_value() == -n))
9903  {
9904  return *m_object;
9905  }
9906 
9907  JSON_THROW(invalid_iterator::create(214, "cannot get value"));
9908  }
9909  }
9910  }
9911 
9912  /*!
9913  @brief return the key of an object iterator
9914  @pre The iterator is initialized; i.e. `m_object != nullptr`.
9915  */
9916  const typename object_t::key_type& key() const
9917  {
9918  assert(m_object != nullptr);
9919 
9920  if (JSON_HEDLEY_LIKELY(m_object->is_object()))
9921  {
9922  return m_it.object_iterator->first;
9923  }
9924 
9925  JSON_THROW(invalid_iterator::create(207, "cannot use key() for non-object iterators"));
9926  }
9927 
9928  /*!
9929  @brief return the value of an iterator
9930  @pre The iterator is initialized; i.e. `m_object != nullptr`.
9931  */
9933  {
9934  return operator*();
9935  }
9936 
9937  private:
9938  /// associated JSON instance
9939  pointer m_object = nullptr;
9940  /// the actual iterator of the associated instance
9942 };
9943 } // namespace detail
9944 } // namespace nlohmann
9945 
9946 // #include <nlohmann/detail/iterators/iteration_proxy.hpp>
9947 
9948 // #include <nlohmann/detail/iterators/json_reverse_iterator.hpp>
9949 
9950 
9951 #include <cstddef> // ptrdiff_t
9952 #include <iterator> // reverse_iterator
9953 #include <utility> // declval
9954 
9955 namespace nlohmann
9956 {
9957 namespace detail
9958 {
9959 //////////////////////
9960 // reverse_iterator //
9961 //////////////////////
9962 
9963 /*!
9964 @brief a template for a reverse iterator class
9965 
9966 @tparam Base the base iterator type to reverse. Valid types are @ref
9967 iterator (to create @ref reverse_iterator) and @ref const_iterator (to
9968 create @ref const_reverse_iterator).
9969 
9970 @requirement The class satisfies the following concept requirements:
9971 -
9972 [BidirectionalIterator](https://en.cppreference.com/w/cpp/named_req/BidirectionalIterator):
9973  The iterator that can be moved can be moved in both directions (i.e.
9974  incremented and decremented).
9975 - [OutputIterator](https://en.cppreference.com/w/cpp/named_req/OutputIterator):
9976  It is possible to write to the pointed-to element (only if @a Base is
9977  @ref iterator).
9978 
9979 @since version 1.0.0
9980 */
9981 template<typename Base>
9982 class json_reverse_iterator : public std::reverse_iterator<Base>
9983 {
9984  public:
9985  using difference_type = std::ptrdiff_t;
9986  /// shortcut to the reverse iterator adapter
9987  using base_iterator = std::reverse_iterator<Base>;
9988  /// the reference type for the pointed-to element
9989  using reference = typename Base::reference;
9990 
9991  /// create reverse iterator from iterator
9992  explicit json_reverse_iterator(const typename base_iterator::iterator_type& it) noexcept
9993  : base_iterator(it) {}
9994 
9995  /// create reverse iterator from base class
9996  explicit json_reverse_iterator(const base_iterator& it) noexcept : base_iterator(it) {}
9997 
9998  /// post-increment (it++)
10000  {
10001  return static_cast<json_reverse_iterator>(base_iterator::operator++(1));
10002  }
10003 
10004  /// pre-increment (++it)
10006  {
10007  return static_cast<json_reverse_iterator&>(base_iterator::operator++());
10008  }
10009 
10010  /// post-decrement (it--)
10012  {
10013  return static_cast<json_reverse_iterator>(base_iterator::operator--(1));
10014  }
10015 
10016  /// pre-decrement (--it)
10018  {
10019  return static_cast<json_reverse_iterator&>(base_iterator::operator--());
10020  }
10021 
10022  /// add to iterator
10024  {
10025  return static_cast<json_reverse_iterator&>(base_iterator::operator+=(i));
10026  }
10027 
10028  /// add to iterator
10030  {
10031  return static_cast<json_reverse_iterator>(base_iterator::operator+(i));
10032  }
10033 
10034  /// subtract from iterator
10036  {
10037  return static_cast<json_reverse_iterator>(base_iterator::operator-(i));
10038  }
10039 
10040  /// return difference
10042  {
10043  return base_iterator(*this) - base_iterator(other);
10044  }
10045 
10046  /// access to successor
10048  {
10049  return *(this->operator+(n));
10050  }
10051 
10052  /// return the key of an object iterator
10053  auto key() const -> decltype(std::declval<Base>().key())
10054  {
10055  auto it = --this->base();
10056  return it.key();
10057  }
10058 
10059  /// return the value of an iterator
10061  {
10062  auto it = --this->base();
10063  return it.operator * ();
10064  }
10065 };
10066 } // namespace detail
10067 } // namespace nlohmann
10068 
10069 // #include <nlohmann/detail/iterators/primitive_iterator.hpp>
10070 
10071 // #include <nlohmann/detail/json_pointer.hpp>
10072 
10073 
10074 #include <algorithm> // all_of
10075 #include <cassert> // assert
10076 #include <cctype> // isdigit
10077 #include <numeric> // accumulate
10078 #include <string> // string
10079 #include <utility> // move
10080 #include <vector> // vector
10081 
10082 // #include <nlohmann/detail/exceptions.hpp>
10083 
10084 // #include <nlohmann/detail/macro_scope.hpp>
10085 
10086 // #include <nlohmann/detail/value_t.hpp>
10087 
10088 
10089 namespace nlohmann
10090 {
10091 template<typename BasicJsonType>
10092 class json_pointer
10093 {
10094  // allow basic_json to access private members
10096  friend class basic_json;
10097 
10098  public:
10099  /*!
10100  @brief create JSON pointer
10101 
10102  Create a JSON pointer according to the syntax described in
10103  [Section 3 of RFC6901](https://tools.ietf.org/html/rfc6901#section-3).
10104 
10105  @param[in] s string representing the JSON pointer; if omitted, the empty
10106  string is assumed which references the whole JSON value
10107 
10108  @throw parse_error.107 if the given JSON pointer @a s is nonempty and does
10109  not begin with a slash (`/`); see example below
10110 
10111  @throw parse_error.108 if a tilde (`~`) in the given JSON pointer @a s is
10112  not followed by `0` (representing `~`) or `1` (representing `/`); see
10113  example below
10114 
10115  @liveexample{The example shows the construction several valid JSON pointers
10116  as well as the exceptional behavior.,json_pointer}
10117 
10118  @since version 2.0.0
10119  */
10120  explicit json_pointer(const std::string& s = "")
10121  : reference_tokens(split(s))
10122  {}
10123 
10124  /*!
10125  @brief return a string representation of the JSON pointer
10126 
10127  @invariant For each JSON pointer `ptr`, it holds:
10128  @code {.cpp}
10129  ptr == json_pointer(ptr.to_string());
10130  @endcode
10131 
10132  @return a string representation of the JSON pointer
10133 
10134  @liveexample{The example shows the result of `to_string`.,json_pointer__to_string}
10135 
10136  @since version 2.0.0
10137  */
10138  std::string to_string() const
10139  {
10140  return std::accumulate(reference_tokens.begin(), reference_tokens.end(),
10141  std::string{},
10142  [](const std::string & a, const std::string & b)
10143  {
10144  return a + "/" + escape(b);
10145  });
10146  }
10147 
10148  /// @copydoc to_string()
10149  operator std::string() const
10150  {
10151  return to_string();
10152  }
10153 
10154  /*!
10155  @brief append another JSON pointer at the end of this JSON pointer
10156 
10157  @param[in] ptr JSON pointer to append
10158  @return JSON pointer with @a ptr appended
10159 
10160  @liveexample{The example shows the usage of `operator/=`.,json_pointer__operator_add}
10161 
10162  @complexity Linear in the length of @a ptr.
10163 
10164  @sa @ref operator/=(std::string) to append a reference token
10165  @sa @ref operator/=(std::size_t) to append an array index
10166  @sa @ref operator/(const json_pointer&, const json_pointer&) for a binary operator
10167 
10168  @since version 3.6.0
10169  */
10171  {
10172  reference_tokens.insert(reference_tokens.end(),
10173  ptr.reference_tokens.begin(),
10174  ptr.reference_tokens.end());
10175  return *this;
10176  }
10177 
10178  /*!
10179  @brief append an unescaped reference token at the end of this JSON pointer
10180 
10181  @param[in] token reference token to append
10182  @return JSON pointer with @a token appended without escaping @a token
10183 
10184  @liveexample{The example shows the usage of `operator/=`.,json_pointer__operator_add}
10185 
10186  @complexity Amortized constant.
10187 
10188  @sa @ref operator/=(const json_pointer&) to append a JSON pointer
10189  @sa @ref operator/=(std::size_t) to append an array index
10190  @sa @ref operator/(const json_pointer&, std::size_t) for a binary operator
10191 
10192  @since version 3.6.0
10193  */
10194  json_pointer& operator/=(std::string token)
10195  {
10196  push_back(std::move(token));
10197  return *this;
10198  }
10199 
10200  /*!
10201  @brief append an array index at the end of this JSON pointer
10202 
10203  @param[in] array_index array index to append
10204  @return JSON pointer with @a array_index appended
10205 
10206  @liveexample{The example shows the usage of `operator/=`.,json_pointer__operator_add}
10207 
10208  @complexity Amortized constant.
10209 
10210  @sa @ref operator/=(const json_pointer&) to append a JSON pointer
10211  @sa @ref operator/=(std::string) to append a reference token
10212  @sa @ref operator/(const json_pointer&, std::string) for a binary operator
10213 
10214  @since version 3.6.0
10215  */
10216  json_pointer& operator/=(std::size_t array_index)
10217  {
10218  return *this /= std::to_string(array_index);
10219  }
10220 
10221  /*!
10222  @brief create a new JSON pointer by appending the right JSON pointer at the end of the left JSON pointer
10223 
10224  @param[in] lhs JSON pointer
10225  @param[in] rhs JSON pointer
10226  @return a new JSON pointer with @a rhs appended to @a lhs
10227 
10228  @liveexample{The example shows the usage of `operator/`.,json_pointer__operator_add_binary}
10229 
10230  @complexity Linear in the length of @a lhs and @a rhs.
10231 
10232  @sa @ref operator/=(const json_pointer&) to append a JSON pointer
10233 
10234  @since version 3.6.0
10235  */
10237  const json_pointer& rhs)
10238  {
10239  return json_pointer(lhs) /= rhs;
10240  }
10241 
10242  /*!
10243  @brief create a new JSON pointer by appending the unescaped token at the end of the JSON pointer
10244 
10245  @param[in] ptr JSON pointer
10246  @param[in] token reference token
10247  @return a new JSON pointer with unescaped @a token appended to @a ptr
10248 
10249  @liveexample{The example shows the usage of `operator/`.,json_pointer__operator_add_binary}
10250 
10251  @complexity Linear in the length of @a ptr.
10252 
10253  @sa @ref operator/=(std::string) to append a reference token
10254 
10255  @since version 3.6.0
10256  */
10257  friend json_pointer operator/(const json_pointer& ptr, std::string token)
10258  {
10259  return json_pointer(ptr) /= std::move(token);
10260  }
10261 
10262  /*!
10263  @brief create a new JSON pointer by appending the array-index-token at the end of the JSON pointer
10264 
10265  @param[in] ptr JSON pointer
10266  @param[in] array_index array index
10267  @return a new JSON pointer with @a array_index appended to @a ptr
10268 
10269  @liveexample{The example shows the usage of `operator/`.,json_pointer__operator_add_binary}
10270 
10271  @complexity Linear in the length of @a ptr.
10272 
10273  @sa @ref operator/=(std::size_t) to append an array index
10274 
10275  @since version 3.6.0
10276  */
10277  friend json_pointer operator/(const json_pointer& ptr, std::size_t array_index)
10278  {
10279  return json_pointer(ptr) /= array_index;
10280  }
10281 
10282  /*!
10283  @brief returns the parent of this JSON pointer
10284 
10285  @return parent of this JSON pointer; in case this JSON pointer is the root,
10286  the root itself is returned
10287 
10288  @complexity Linear in the length of the JSON pointer.
10289 
10290  @liveexample{The example shows the result of `parent_pointer` for different
10291  JSON Pointers.,json_pointer__parent_pointer}
10292 
10293  @since version 3.6.0
10294  */
10296  {
10297  if (empty())
10298  {
10299  return *this;
10300  }
10301 
10302  json_pointer res = *this;
10303  res.pop_back();
10304  return res;
10305  }
10306 
10307  /*!
10308  @brief remove last reference token
10309 
10310  @pre not `empty()`
10311 
10312  @liveexample{The example shows the usage of `pop_back`.,json_pointer__pop_back}
10313 
10314  @complexity Constant.
10315 
10316  @throw out_of_range.405 if JSON pointer has no parent
10317 
10318  @since version 3.6.0
10319  */
10320  void pop_back()
10321  {
10322  if (JSON_HEDLEY_UNLIKELY(empty()))
10323  {
10324  JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent"));
10325  }
10326 
10327  reference_tokens.pop_back();
10328  }
10329 
10330  /*!
10331  @brief return last reference token
10332 
10333  @pre not `empty()`
10334  @return last reference token
10335 
10336  @liveexample{The example shows the usage of `back`.,json_pointer__back}
10337 
10338  @complexity Constant.
10339 
10340  @throw out_of_range.405 if JSON pointer has no parent
10341 
10342  @since version 3.6.0
10343  */
10344  const std::string& back() const
10345  {
10346  if (JSON_HEDLEY_UNLIKELY(empty()))
10347  {
10348  JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent"));
10349  }
10350 
10351  return reference_tokens.back();
10352  }
10353 
10354  /*!
10355  @brief append an unescaped token at the end of the reference pointer
10356 
10357  @param[in] token token to add
10358 
10359  @complexity Amortized constant.
10360 
10361  @liveexample{The example shows the result of `push_back` for different
10362  JSON Pointers.,json_pointer__push_back}
10363 
10364  @since version 3.6.0
10365  */
10366  void push_back(const std::string& token)
10367  {
10368  reference_tokens.push_back(token);
10369  }
10370 
10371  /// @copydoc push_back(const std::string&)
10372  void push_back(std::string&& token)
10373  {
10374  reference_tokens.push_back(std::move(token));
10375  }
10376 
10377  /*!
10378  @brief return whether pointer points to the root document
10379 
10380  @return true iff the JSON pointer points to the root document
10381 
10382  @complexity Constant.
10383 
10384  @exceptionsafety No-throw guarantee: this function never throws exceptions.
10385 
10386  @liveexample{The example shows the result of `empty` for different JSON
10387  Pointers.,json_pointer__empty}
10388 
10389  @since version 3.6.0
10390  */
10391  bool empty() const noexcept
10392  {
10393  return reference_tokens.empty();
10394  }
10395 
10396  private:
10397  /*!
10398  @param[in] s reference token to be converted into an array index
10399 
10400  @return integer representation of @a s
10401 
10402  @throw out_of_range.404 if string @a s could not be converted to an integer
10403  */
10404  static int array_index(const std::string& s)
10405  {
10406  std::size_t processed_chars = 0;
10407  const int res = std::stoi(s, &processed_chars);
10408 
10409  // check if the string was completely read
10410  if (JSON_HEDLEY_UNLIKELY(processed_chars != s.size()))
10411  {
10412  JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + s + "'"));
10413  }
10414 
10415  return res;
10416  }
10417 
10419  {
10420  if (JSON_HEDLEY_UNLIKELY(empty()))
10421  {
10422  JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent"));
10423  }
10424 
10425  json_pointer result = *this;
10426  result.reference_tokens = {reference_tokens[0]};
10427  return result;
10428  }
10429 
10430  /*!
10431  @brief create and return a reference to the pointed to value
10432 
10433  @complexity Linear in the number of reference tokens.
10434 
10435  @throw parse_error.109 if array index is not a number
10436  @throw type_error.313 if value cannot be unflattened
10437  */
10438  BasicJsonType& get_and_create(BasicJsonType& j) const
10439  {
10440  using size_type = typename BasicJsonType::size_type;
10441  auto result = &j;
10442 
10443  // in case no reference tokens exist, return a reference to the JSON value
10444  // j which will be overwritten by a primitive value
10445  for (const auto& reference_token : reference_tokens)
10446  {
10447  switch (result->type())
10448  {
10449  case detail::value_t::null:
10450  {
10451  if (reference_token == "0")
10452  {
10453  // start a new array if reference token is 0
10454  result = &result->operator[](0);
10455  }
10456  else
10457  {
10458  // start a new object otherwise
10459  result = &result->operator[](reference_token);
10460  }
10461  break;
10462  }
10463 
10465  {
10466  // create an entry in the object
10467  result = &result->operator[](reference_token);
10468  break;
10469  }
10470 
10472  {
10473  // create an entry in the array
10474  JSON_TRY
10475  {
10476  result = &result->operator[](static_cast<size_type>(array_index(reference_token)));
10477  }
10478  JSON_CATCH(std::invalid_argument&)
10479  {
10480  JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
10481  }
10482  break;
10483  }
10484 
10485  /*
10486  The following code is only reached if there exists a reference
10487  token _and_ the current value is primitive. In this case, we have
10488  an error situation, because primitive values may only occur as
10489  single value; that is, with an empty list of reference tokens.
10490  */
10491  default:
10492  JSON_THROW(detail::type_error::create(313, "invalid value to unflatten"));
10493  }
10494  }
10495 
10496  return *result;
10497  }
10498 
10499  /*!
10500  @brief return a reference to the pointed to value
10501 
10502  @note This version does not throw if a value is not present, but tries to
10503  create nested values instead. For instance, calling this function
10504  with pointer `"/this/that"` on a null value is equivalent to calling
10505  `operator[]("this").operator[]("that")` on that value, effectively
10506  changing the null value to an object.
10507 
10508  @param[in] ptr a JSON value
10509 
10510  @return reference to the JSON value pointed to by the JSON pointer
10511 
10512  @complexity Linear in the length of the JSON pointer.
10513 
10514  @throw parse_error.106 if an array index begins with '0'
10515  @throw parse_error.109 if an array index was not a number
10516  @throw out_of_range.404 if the JSON pointer can not be resolved
10517  */
10518  BasicJsonType& get_unchecked(BasicJsonType* ptr) const
10519  {
10520  using size_type = typename BasicJsonType::size_type;
10521  for (const auto& reference_token : reference_tokens)
10522  {
10523  // convert null values to arrays or objects before continuing
10524  if (ptr->is_null())
10525  {
10526  // check if reference token is a number
10527  const bool nums =
10528  std::all_of(reference_token.begin(), reference_token.end(),
10529  [](const unsigned char x)
10530  {
10531  return std::isdigit(x);
10532  });
10533 
10534  // change value to array for numbers or "-" or to object otherwise
10535  *ptr = (nums or reference_token == "-")
10538  }
10539 
10540  switch (ptr->type())
10541  {
10543  {
10544  // use unchecked object access
10545  ptr = &ptr->operator[](reference_token);
10546  break;
10547  }
10548 
10550  {
10551  // error condition (cf. RFC 6901, Sect. 4)
10552  if (JSON_HEDLEY_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0'))
10553  {
10555  "array index '" + reference_token +
10556  "' must not begin with '0'"));
10557  }
10558 
10559  if (reference_token == "-")
10560  {
10561  // explicitly treat "-" as index beyond the end
10562  ptr = &ptr->operator[](ptr->m_value.array->size());
10563  }
10564  else
10565  {
10566  // convert array index to number; unchecked access
10567  JSON_TRY
10568  {
10569  ptr = &ptr->operator[](
10570  static_cast<size_type>(array_index(reference_token)));
10571  }
10572  JSON_CATCH(std::invalid_argument&)
10573  {
10574  JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
10575  }
10576  }
10577  break;
10578  }
10579 
10580  default:
10581  JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'"));
10582  }
10583  }
10584 
10585  return *ptr;
10586  }
10587 
10588  /*!
10589  @throw parse_error.106 if an array index begins with '0'
10590  @throw parse_error.109 if an array index was not a number
10591  @throw out_of_range.402 if the array index '-' is used
10592  @throw out_of_range.404 if the JSON pointer can not be resolved
10593  */
10594  BasicJsonType& get_checked(BasicJsonType* ptr) const
10595  {
10596  using size_type = typename BasicJsonType::size_type;
10597  for (const auto& reference_token : reference_tokens)
10598  {
10599  switch (ptr->type())
10600  {
10602  {
10603  // note: at performs range check
10604  ptr = &ptr->at(reference_token);
10605  break;
10606  }
10607 
10609  {
10610  if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
10611  {
10612  // "-" always fails the range check
10614  "array index '-' (" + std::to_string(ptr->m_value.array->size()) +
10615  ") is out of range"));
10616  }
10617 
10618  // error condition (cf. RFC 6901, Sect. 4)
10619  if (JSON_HEDLEY_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0'))
10620  {
10622  "array index '" + reference_token +
10623  "' must not begin with '0'"));
10624  }
10625 
10626  // note: at performs range check
10627  JSON_TRY
10628  {
10629  ptr = &ptr->at(static_cast<size_type>(array_index(reference_token)));
10630  }
10631  JSON_CATCH(std::invalid_argument&)
10632  {
10633  JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
10634  }
10635  break;
10636  }
10637 
10638  default:
10639  JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'"));
10640  }
10641  }
10642 
10643  return *ptr;
10644  }
10645 
10646  /*!
10647  @brief return a const reference to the pointed to value
10648 
10649  @param[in] ptr a JSON value
10650 
10651  @return const reference to the JSON value pointed to by the JSON
10652  pointer
10653 
10654  @throw parse_error.106 if an array index begins with '0'
10655  @throw parse_error.109 if an array index was not a number
10656  @throw out_of_range.402 if the array index '-' is used
10657  @throw out_of_range.404 if the JSON pointer can not be resolved
10658  */
10659  const BasicJsonType& get_unchecked(const BasicJsonType* ptr) const
10660  {
10661  using size_type = typename BasicJsonType::size_type;
10662  for (const auto& reference_token : reference_tokens)
10663  {
10664  switch (ptr->type())
10665  {
10667  {
10668  // use unchecked object access
10669  ptr = &ptr->operator[](reference_token);
10670  break;
10671  }
10672 
10674  {
10675  if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
10676  {
10677  // "-" cannot be used for const access
10679  "array index '-' (" + std::to_string(ptr->m_value.array->size()) +
10680  ") is out of range"));
10681  }
10682 
10683  // error condition (cf. RFC 6901, Sect. 4)
10684  if (JSON_HEDLEY_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0'))
10685  {
10687  "array index '" + reference_token +
10688  "' must not begin with '0'"));
10689  }
10690 
10691  // use unchecked array access
10692  JSON_TRY
10693  {
10694  ptr = &ptr->operator[](
10695  static_cast<size_type>(array_index(reference_token)));
10696  }
10697  JSON_CATCH(std::invalid_argument&)
10698  {
10699  JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
10700  }
10701  break;
10702  }
10703 
10704  default:
10705  JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'"));
10706  }
10707  }
10708 
10709  return *ptr;
10710  }
10711 
10712  /*!
10713  @throw parse_error.106 if an array index begins with '0'
10714  @throw parse_error.109 if an array index was not a number
10715  @throw out_of_range.402 if the array index '-' is used
10716  @throw out_of_range.404 if the JSON pointer can not be resolved
10717  */
10718  const BasicJsonType& get_checked(const BasicJsonType* ptr) const
10719  {
10720  using size_type = typename BasicJsonType::size_type;
10721  for (const auto& reference_token : reference_tokens)
10722  {
10723  switch (ptr->type())
10724  {
10726  {
10727  // note: at performs range check
10728  ptr = &ptr->at(reference_token);
10729  break;
10730  }
10731 
10733  {
10734  if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
10735  {
10736  // "-" always fails the range check
10738  "array index '-' (" + std::to_string(ptr->m_value.array->size()) +
10739  ") is out of range"));
10740  }
10741 
10742  // error condition (cf. RFC 6901, Sect. 4)
10743  if (JSON_HEDLEY_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0'))
10744  {
10746  "array index '" + reference_token +
10747  "' must not begin with '0'"));
10748  }
10749 
10750  // note: at performs range check
10751  JSON_TRY
10752  {
10753  ptr = &ptr->at(static_cast<size_type>(array_index(reference_token)));
10754  }
10755  JSON_CATCH(std::invalid_argument&)
10756  {
10757  JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
10758  }
10759  break;
10760  }
10761 
10762  default:
10763  JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'"));
10764  }
10765  }
10766 
10767  return *ptr;
10768  }
10769 
10770  /*!
10771  @throw parse_error.106 if an array index begins with '0'
10772  @throw parse_error.109 if an array index was not a number
10773  */
10774  bool contains(const BasicJsonType* ptr) const
10775  {
10776  using size_type = typename BasicJsonType::size_type;
10777  for (const auto& reference_token : reference_tokens)
10778  {
10779  switch (ptr->type())
10780  {
10782  {
10783  if (not ptr->contains(reference_token))
10784  {
10785  // we did not find the key in the object
10786  return false;
10787  }
10788 
10789  ptr = &ptr->operator[](reference_token);
10790  break;
10791  }
10792 
10794  {
10795  if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
10796  {
10797  // "-" always fails the range check
10798  return false;
10799  }
10800 
10801  // error condition (cf. RFC 6901, Sect. 4)
10802  if (JSON_HEDLEY_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0'))
10803  {
10805  "array index '" + reference_token +
10806  "' must not begin with '0'"));
10807  }
10808 
10809  JSON_TRY
10810  {
10811  const auto idx = static_cast<size_type>(array_index(reference_token));
10812  if (idx >= ptr->size())
10813  {
10814  // index out of range
10815  return false;
10816  }
10817 
10818  ptr = &ptr->operator[](idx);
10819  break;
10820  }
10821  JSON_CATCH(std::invalid_argument&)
10822  {
10823  JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
10824  }
10825  break;
10826  }
10827 
10828  default:
10829  {
10830  // we do not expect primitive values if there is still a
10831  // reference token to process
10832  return false;
10833  }
10834  }
10835  }
10836 
10837  // no reference token left means we found a primitive value
10838  return true;
10839  }
10840 
10841  /*!
10842  @brief split the string input to reference tokens
10843 
10844  @note This function is only called by the json_pointer constructor.
10845  All exceptions below are documented there.
10846 
10847  @throw parse_error.107 if the pointer is not empty or begins with '/'
10848  @throw parse_error.108 if character '~' is not followed by '0' or '1'
10849  */
10850  static std::vector<std::string> split(const std::string& reference_string)
10851  {
10852  std::vector<std::string> result;
10853 
10854  // special case: empty reference string -> no reference tokens
10855  if (reference_string.empty())
10856  {
10857  return result;
10858  }
10859 
10860  // check if nonempty reference string begins with slash
10861  if (JSON_HEDLEY_UNLIKELY(reference_string[0] != '/'))
10862  {
10864  "JSON pointer must be empty or begin with '/' - was: '" +
10865  reference_string + "'"));
10866  }
10867 
10868  // extract the reference tokens:
10869  // - slash: position of the last read slash (or end of string)
10870  // - start: position after the previous slash
10871  for (
10872  // search for the first slash after the first character
10873  std::size_t slash = reference_string.find_first_of('/', 1),
10874  // set the beginning of the first reference token
10875  start = 1;
10876  // we can stop if start == 0 (if slash == std::string::npos)
10877  start != 0;
10878  // set the beginning of the next reference token
10879  // (will eventually be 0 if slash == std::string::npos)
10880  start = (slash == std::string::npos) ? 0 : slash + 1,
10881  // find next slash
10882  slash = reference_string.find_first_of('/', start))
10883  {
10884  // use the text between the beginning of the reference token
10885  // (start) and the last slash (slash).
10886  auto reference_token = reference_string.substr(start, slash - start);
10887 
10888  // check reference tokens are properly escaped
10889  for (std::size_t pos = reference_token.find_first_of('~');
10890  pos != std::string::npos;
10891  pos = reference_token.find_first_of('~', pos + 1))
10892  {
10893  assert(reference_token[pos] == '~');
10894 
10895  // ~ must be followed by 0 or 1
10896  if (JSON_HEDLEY_UNLIKELY(pos == reference_token.size() - 1 or
10897  (reference_token[pos + 1] != '0' and
10898  reference_token[pos + 1] != '1')))
10899  {
10900  JSON_THROW(detail::parse_error::create(108, 0, "escape character '~' must be followed with '0' or '1'"));
10901  }
10902  }
10903 
10904  // finally, store the reference token
10905  unescape(reference_token);
10906  result.push_back(reference_token);
10907  }
10908 
10909  return result;
10910  }
10911 
10912  /*!
10913  @brief replace all occurrences of a substring by another string
10914 
10915  @param[in,out] s the string to manipulate; changed so that all
10916  occurrences of @a f are replaced with @a t
10917  @param[in] f the substring to replace with @a t
10918  @param[in] t the string to replace @a f
10919 
10920  @pre The search string @a f must not be empty. **This precondition is
10921  enforced with an assertion.**
10922 
10923  @since version 2.0.0
10924  */
10925  static void replace_substring(std::string& s, const std::string& f,
10926  const std::string& t)
10927  {
10928  assert(not f.empty());
10929  for (auto pos = s.find(f); // find first occurrence of f
10930  pos != std::string::npos; // make sure f was found
10931  s.replace(pos, f.size(), t), // replace with t, and
10932  pos = s.find(f, pos + t.size())) // find next occurrence of f
10933  {}
10934  }
10935 
10936  /// escape "~" to "~0" and "/" to "~1"
10937  static std::string escape(std::string s)
10938  {
10939  replace_substring(s, "~", "~0");
10940  replace_substring(s, "/", "~1");
10941  return s;
10942  }
10943 
10944  /// unescape "~1" to tilde and "~0" to slash (order is important!)
10945  static void unescape(std::string& s)
10946  {
10947  replace_substring(s, "~1", "/");
10948  replace_substring(s, "~0", "~");
10949  }
10950 
10951  /*!
10952  @param[in] reference_string the reference string to the current value
10953  @param[in] value the value to consider
10954  @param[in,out] result the result object to insert values to
10955 
10956  @note Empty objects or arrays are flattened to `null`.
10957  */
10958  static void flatten(const std::string& reference_string,
10959  const BasicJsonType& value,
10960  BasicJsonType& result)
10961  {
10962  switch (value.type())
10963  {
10965  {
10966  if (value.m_value.array->empty())
10967  {
10968  // flatten empty array as null
10969  result[reference_string] = nullptr;
10970  }
10971  else
10972  {
10973  // iterate array and use index as reference string
10974  for (std::size_t i = 0; i < value.m_value.array->size(); ++i)
10975  {
10976  flatten(reference_string + "/" + std::to_string(i),
10977  value.m_value.array->operator[](i), result);
10978  }
10979  }
10980  break;
10981  }
10982 
10984  {
10985  if (value.m_value.object->empty())
10986  {
10987  // flatten empty object as null
10988  result[reference_string] = nullptr;
10989  }
10990  else
10991  {
10992  // iterate object and use keys as reference string
10993  for (const auto& element : *value.m_value.object)
10994  {
10995  flatten(reference_string + "/" + escape(element.first), element.second, result);
10996  }
10997  }
10998  break;
10999  }
11000 
11001  default:
11002  {
11003  // add primitive value with its reference string
11004  result[reference_string] = value;
11005  break;
11006  }
11007  }
11008  }
11009 
11010  /*!
11011  @param[in] value flattened JSON
11012 
11013  @return unflattened JSON
11014 
11015  @throw parse_error.109 if array index is not a number
11016  @throw type_error.314 if value is not an object
11017  @throw type_error.315 if object values are not primitive
11018  @throw type_error.313 if value cannot be unflattened
11019  */
11020  static BasicJsonType
11021  unflatten(const BasicJsonType& value)
11022  {
11023  if (JSON_HEDLEY_UNLIKELY(not value.is_object()))
11024  {
11025  JSON_THROW(detail::type_error::create(314, "only objects can be unflattened"));
11026  }
11027 
11028  BasicJsonType result;
11029 
11030  // iterate the JSON object values
11031  for (const auto& element : *value.m_value.object)
11032  {
11033  if (JSON_HEDLEY_UNLIKELY(not element.second.is_primitive()))
11034  {
11035  JSON_THROW(detail::type_error::create(315, "values in object must be primitive"));
11036  }
11037 
11038  // assign value to reference pointed to by JSON pointer; Note that if
11039  // the JSON pointer is "" (i.e., points to the whole value), function
11040  // get_and_create returns a reference to result itself. An assignment
11041  // will then create a primitive value.
11042  json_pointer(element.first).get_and_create(result) = element.second;
11043  }
11044 
11045  return result;
11046  }
11047 
11048  /*!
11049  @brief compares two JSON pointers for equality
11050 
11051  @param[in] lhs JSON pointer to compare
11052  @param[in] rhs JSON pointer to compare
11053  @return whether @a lhs is equal to @a rhs
11054 
11055  @complexity Linear in the length of the JSON pointer
11056 
11057  @exceptionsafety No-throw guarantee: this function never throws exceptions.
11058  */
11059  friend bool operator==(json_pointer const& lhs,
11060  json_pointer const& rhs) noexcept
11061  {
11062  return lhs.reference_tokens == rhs.reference_tokens;
11063  }
11064 
11065  /*!
11066  @brief compares two JSON pointers for inequality
11067 
11068  @param[in] lhs JSON pointer to compare
11069  @param[in] rhs JSON pointer to compare
11070  @return whether @a lhs is not equal @a rhs
11071 
11072  @complexity Linear in the length of the JSON pointer
11073 
11074  @exceptionsafety No-throw guarantee: this function never throws exceptions.
11075  */
11076  friend bool operator!=(json_pointer const& lhs,
11077  json_pointer const& rhs) noexcept
11078  {
11079  return not (lhs == rhs);
11080  }
11081 
11082  /// the reference tokens
11083  std::vector<std::string> reference_tokens;
11084 };
11085 } // namespace nlohmann
11086 
11087 // #include <nlohmann/detail/json_ref.hpp>
11088 
11089 
11090 #include <initializer_list>
11091 #include <utility>
11092 
11093 // #include <nlohmann/detail/meta/type_traits.hpp>
11094 
11095 
11096 namespace nlohmann
11097 {
11098 namespace detail
11099 {
11100 template<typename BasicJsonType>
11102 {
11103  public:
11104  using value_type = BasicJsonType;
11105 
11107  : owned_value(std::move(value)), value_ref(&owned_value), is_rvalue(true)
11108  {}
11109 
11111  : value_ref(const_cast<value_type*>(&value)), is_rvalue(false)
11112  {}
11113 
11114  json_ref(std::initializer_list<json_ref> init)
11115  : owned_value(init), value_ref(&owned_value), is_rvalue(true)
11116  {}
11117 
11118  template <
11119  class... Args,
11120  enable_if_t<std::is_constructible<value_type, Args...>::value, int> = 0 >
11121  json_ref(Args && ... args)
11122  : owned_value(std::forward<Args>(args)...), value_ref(&owned_value),
11123  is_rvalue(true) {}
11124 
11125  // class should be movable only
11126  json_ref(json_ref&&) = default;
11127  json_ref(const json_ref&) = delete;
11128  json_ref& operator=(const json_ref&) = delete;
11129  json_ref& operator=(json_ref&&) = delete;
11130  ~json_ref() = default;
11131 
11133  {
11134  if (is_rvalue)
11135  {
11136  return std::move(*value_ref);
11137  }
11138  return *value_ref;
11139  }
11140 
11141  value_type const& operator*() const
11142  {
11143  return *static_cast<value_type const*>(value_ref);
11144  }
11145 
11146  value_type const* operator->() const
11147  {
11148  return static_cast<value_type const*>(value_ref);
11149  }
11150 
11151  private:
11152  mutable value_type owned_value = nullptr;
11153  value_type* value_ref = nullptr;
11154  const bool is_rvalue;
11155 };
11156 } // namespace detail
11157 } // namespace nlohmann
11158 
11159 // #include <nlohmann/detail/macro_scope.hpp>
11160 
11161 // #include <nlohmann/detail/meta/cpp_future.hpp>
11162 
11163 // #include <nlohmann/detail/meta/type_traits.hpp>
11164 
11165 // #include <nlohmann/detail/output/binary_writer.hpp>
11166 
11167 
11168 #include <algorithm> // reverse
11169 #include <array> // array
11170 #include <cstdint> // uint8_t, uint16_t, uint32_t, uint64_t
11171 #include <cstring> // memcpy
11172 #include <limits> // numeric_limits
11173 #include <string> // string
11174 
11175 // #include <nlohmann/detail/input/binary_reader.hpp>
11176 
11177 // #include <nlohmann/detail/macro_scope.hpp>
11178 
11179 // #include <nlohmann/detail/output/output_adapters.hpp>
11180 
11181 
11182 #include <algorithm> // copy
11183 #include <cstddef> // size_t
11184 #include <ios> // streamsize
11185 #include <iterator> // back_inserter
11186 #include <memory> // shared_ptr, make_shared
11187 #include <ostream> // basic_ostream
11188 #include <string> // basic_string
11189 #include <vector> // vector
11190 // #include <nlohmann/detail/macro_scope.hpp>
11191 
11192 
11193 namespace nlohmann
11194 {
11195 namespace detail
11196 {
11197 /// abstract output adapter interface
11198 template<typename CharType> struct output_adapter_protocol
11199 {
11200  virtual void write_character(CharType c) = 0;
11201  virtual void write_characters(const CharType* s, std::size_t length) = 0;
11202  virtual ~output_adapter_protocol() = default;
11203 };
11204 
11205 /// a type to simplify interfaces
11206 template<typename CharType>
11207 using output_adapter_t = std::shared_ptr<output_adapter_protocol<CharType>>;
11208 
11209 /// output adapter for byte vectors
11210 template<typename CharType>
11212 {
11213  public:
11214  explicit output_vector_adapter(std::vector<CharType>& vec) noexcept
11215  : v(vec)
11216  {}
11217 
11218  void write_character(CharType c) override
11219  {
11220  v.push_back(c);
11221  }
11222 
11224  void write_characters(const CharType* s, std::size_t length) override
11225  {
11226  std::copy(s, s + length, std::back_inserter(v));
11227  }
11228 
11229  private:
11230  std::vector<CharType>& v;
11231 };
11232 
11233 /// output adapter for output streams
11234 template<typename CharType>
11236 {
11237  public:
11238  explicit output_stream_adapter(std::basic_ostream<CharType>& s) noexcept
11239  : stream(s)
11240  {}
11241 
11242  void write_character(CharType c) override
11243  {
11244  stream.put(c);
11245  }
11246 
11248  void write_characters(const CharType* s, std::size_t length) override
11249  {
11250  stream.write(s, static_cast<std::streamsize>(length));
11251  }
11252 
11253  private:
11254  std::basic_ostream<CharType>& stream;
11255 };
11256 
11257 /// output adapter for basic_string
11258 template<typename CharType, typename StringType = std::basic_string<CharType>>
11260 {
11261  public:
11262  explicit output_string_adapter(StringType& s) noexcept
11263  : str(s)
11264  {}
11265 
11266  void write_character(CharType c) override
11267  {
11268  str.push_back(c);
11269  }
11270 
11272  void write_characters(const CharType* s, std::size_t length) override
11273  {
11274  str.append(s, length);
11275  }
11276 
11277  private:
11278  StringType& str;
11279 };
11280 
11281 template<typename CharType, typename StringType = std::basic_string<CharType>>
11283 {
11284  public:
11285  output_adapter(std::vector<CharType>& vec)
11286  : oa(std::make_shared<output_vector_adapter<CharType>>(vec)) {}
11287 
11288  output_adapter(std::basic_ostream<CharType>& s)
11289  : oa(std::make_shared<output_stream_adapter<CharType>>(s)) {}
11290 
11291  output_adapter(StringType& s)
11292  : oa(std::make_shared<output_string_adapter<CharType, StringType>>(s)) {}
11293 
11295  {
11296  return oa;
11297  }
11298 
11299  private:
11301 };
11302 } // namespace detail
11303 } // namespace nlohmann
11304 
11305 
11306 namespace nlohmann
11307 {
11308 namespace detail
11309 {
11310 ///////////////////
11311 // binary writer //
11312 ///////////////////
11313 
11314 /*!
11315 @brief serialization to CBOR and MessagePack values
11316 */
11317 template<typename BasicJsonType, typename CharType>
11319 {
11320  using string_t = typename BasicJsonType::string_t;
11321 
11322  public:
11323  /*!
11324  @brief create a binary writer
11325 
11326  @param[in] adapter output adapter to write to
11327  */
11328  explicit binary_writer(output_adapter_t<CharType> adapter) : oa(adapter)
11329  {
11330  assert(oa);
11331  }
11332 
11333  /*!
11334  @param[in] j JSON value to serialize
11335  @pre j.type() == value_t::object
11336  */
11337  void write_bson(const BasicJsonType& j)
11338  {
11339  switch (j.type())
11340  {
11341  case value_t::object:
11342  {
11343  write_bson_object(*j.m_value.object);
11344  break;
11345  }
11346 
11347  default:
11348  {
11349  JSON_THROW(type_error::create(317, "to serialize to BSON, top-level type must be object, but is " + std::string(j.type_name())));
11350  }
11351  }
11352  }
11353 
11354  /*!
11355  @param[in] j JSON value to serialize
11356  */
11357  void write_cbor(const BasicJsonType& j)
11358  {
11359  switch (j.type())
11360  {
11361  case value_t::null:
11362  {
11363  oa->write_character(to_char_type(0xF6));
11364  break;
11365  }
11366 
11367  case value_t::boolean:
11368  {
11369  oa->write_character(j.m_value.boolean
11370  ? to_char_type(0xF5)
11371  : to_char_type(0xF4));
11372  break;
11373  }
11374 
11375  case value_t::number_integer:
11376  {
11377  if (j.m_value.number_integer >= 0)
11378  {
11379  // CBOR does not differentiate between positive signed
11380  // integers and unsigned integers. Therefore, we used the
11381  // code from the value_t::number_unsigned case here.
11382  if (j.m_value.number_integer <= 0x17)
11383  {
11384  write_number(static_cast<std::uint8_t>(j.m_value.number_integer));
11385  }
11386  else if (j.m_value.number_integer <= (std::numeric_limits<std::uint8_t>::max)())
11387  {
11388  oa->write_character(to_char_type(0x18));
11389  write_number(static_cast<std::uint8_t>(j.m_value.number_integer));
11390  }
11391  else if (j.m_value.number_integer <= (std::numeric_limits<std::uint16_t>::max)())
11392  {
11393  oa->write_character(to_char_type(0x19));
11394  write_number(static_cast<std::uint16_t>(j.m_value.number_integer));
11395  }
11396  else if (j.m_value.number_integer <= (std::numeric_limits<std::uint32_t>::max)())
11397  {
11398  oa->write_character(to_char_type(0x1A));
11399  write_number(static_cast<std::uint32_t>(j.m_value.number_integer));
11400  }
11401  else
11402  {
11403  oa->write_character(to_char_type(0x1B));
11404  write_number(static_cast<std::uint64_t>(j.m_value.number_integer));
11405  }
11406  }
11407  else
11408  {
11409  // The conversions below encode the sign in the first
11410  // byte, and the value is converted to a positive number.
11411  const auto positive_number = -1 - j.m_value.number_integer;
11412  if (j.m_value.number_integer >= -24)
11413  {
11414  write_number(static_cast<std::uint8_t>(0x20 + positive_number));
11415  }
11416  else if (positive_number <= (std::numeric_limits<std::uint8_t>::max)())
11417  {
11418  oa->write_character(to_char_type(0x38));
11419  write_number(static_cast<std::uint8_t>(positive_number));
11420  }
11421  else if (positive_number <= (std::numeric_limits<std::uint16_t>::max)())
11422  {
11423  oa->write_character(to_char_type(0x39));
11424  write_number(static_cast<std::uint16_t>(positive_number));
11425  }
11426  else if (positive_number <= (std::numeric_limits<std::uint32_t>::max)())
11427  {
11428  oa->write_character(to_char_type(0x3A));
11429  write_number(static_cast<std::uint32_t>(positive_number));
11430  }
11431  else
11432  {
11433  oa->write_character(to_char_type(0x3B));
11434  write_number(static_cast<std::uint64_t>(positive_number));
11435  }
11436  }
11437  break;
11438  }
11439 
11440  case value_t::number_unsigned:
11441  {
11442  if (j.m_value.number_unsigned <= 0x17)
11443  {
11444  write_number(static_cast<std::uint8_t>(j.m_value.number_unsigned));
11445  }
11446  else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint8_t>::max)())
11447  {
11448  oa->write_character(to_char_type(0x18));
11449  write_number(static_cast<std::uint8_t>(j.m_value.number_unsigned));
11450  }
11451  else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint16_t>::max)())
11452  {
11453  oa->write_character(to_char_type(0x19));
11454  write_number(static_cast<std::uint16_t>(j.m_value.number_unsigned));
11455  }
11456  else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint32_t>::max)())
11457  {
11458  oa->write_character(to_char_type(0x1A));
11459  write_number(static_cast<std::uint32_t>(j.m_value.number_unsigned));
11460  }
11461  else
11462  {
11463  oa->write_character(to_char_type(0x1B));
11464  write_number(static_cast<std::uint64_t>(j.m_value.number_unsigned));
11465  }
11466  break;
11467  }
11468 
11469  case value_t::number_float:
11470  {
11471  oa->write_character(get_cbor_float_prefix(j.m_value.number_float));
11472  write_number(j.m_value.number_float);
11473  break;
11474  }
11475 
11476  case value_t::string:
11477  {
11478  // step 1: write control byte and the string length
11479  const auto N = j.m_value.string->size();
11480  if (N <= 0x17)
11481  {
11482  write_number(static_cast<std::uint8_t>(0x60 + N));
11483  }
11484  else if (N <= (std::numeric_limits<std::uint8_t>::max)())
11485  {
11486  oa->write_character(to_char_type(0x78));
11487  write_number(static_cast<std::uint8_t>(N));
11488  }
11489  else if (N <= (std::numeric_limits<std::uint16_t>::max)())
11490  {
11491  oa->write_character(to_char_type(0x79));
11492  write_number(static_cast<std::uint16_t>(N));
11493  }
11494  else if (N <= (std::numeric_limits<std::uint32_t>::max)())
11495  {
11496  oa->write_character(to_char_type(0x7A));
11497  write_number(static_cast<std::uint32_t>(N));
11498  }
11499  // LCOV_EXCL_START
11500  else if (N <= (std::numeric_limits<std::uint64_t>::max)())
11501  {
11502  oa->write_character(to_char_type(0x7B));
11503  write_number(static_cast<std::uint64_t>(N));
11504  }
11505  // LCOV_EXCL_STOP
11506 
11507  // step 2: write the string
11508  oa->write_characters(
11509  reinterpret_cast<const CharType*>(j.m_value.string->c_str()),
11510  j.m_value.string->size());
11511  break;
11512  }
11513 
11514  case value_t::array:
11515  {
11516  // step 1: write control byte and the array size
11517  const auto N = j.m_value.array->size();
11518  if (N <= 0x17)
11519  {
11520  write_number(static_cast<std::uint8_t>(0x80 + N));
11521  }
11522  else if (N <= (std::numeric_limits<std::uint8_t>::max)())
11523  {
11524  oa->write_character(to_char_type(0x98));
11525  write_number(static_cast<std::uint8_t>(N));
11526  }
11527  else if (N <= (std::numeric_limits<std::uint16_t>::max)())
11528  {
11529  oa->write_character(to_char_type(0x99));
11530  write_number(static_cast<std::uint16_t>(N));
11531  }
11532  else if (N <= (std::numeric_limits<std::uint32_t>::max)())
11533  {
11534  oa->write_character(to_char_type(0x9A));
11535  write_number(static_cast<std::uint32_t>(N));
11536  }
11537  // LCOV_EXCL_START
11538  else if (N <= (std::numeric_limits<std::uint64_t>::max)())
11539  {
11540  oa->write_character(to_char_type(0x9B));
11541  write_number(static_cast<std::uint64_t>(N));
11542  }
11543  // LCOV_EXCL_STOP
11544 
11545  // step 2: write each element
11546  for (const auto& el : *j.m_value.array)
11547  {
11548  write_cbor(el);
11549  }
11550  break;
11551  }
11552 
11553  case value_t::object:
11554  {
11555  // step 1: write control byte and the object size
11556  const auto N = j.m_value.object->size();
11557  if (N <= 0x17)
11558  {
11559  write_number(static_cast<std::uint8_t>(0xA0 + N));
11560  }
11561  else if (N <= (std::numeric_limits<std::uint8_t>::max)())
11562  {
11563  oa->write_character(to_char_type(0xB8));
11564  write_number(static_cast<std::uint8_t>(N));
11565  }
11566  else if (N <= (std::numeric_limits<std::uint16_t>::max)())
11567  {
11568  oa->write_character(to_char_type(0xB9));
11569  write_number(static_cast<std::uint16_t>(N));
11570  }
11571  else if (N <= (std::numeric_limits<std::uint32_t>::max)())
11572  {
11573  oa->write_character(to_char_type(0xBA));
11574  write_number(static_cast<std::uint32_t>(N));
11575  }
11576  // LCOV_EXCL_START
11577  else if (N <= (std::numeric_limits<std::uint64_t>::max)())
11578  {
11579  oa->write_character(to_char_type(0xBB));
11580  write_number(static_cast<std::uint64_t>(N));
11581  }
11582  // LCOV_EXCL_STOP
11583 
11584  // step 2: write each element
11585  for (const auto& el : *j.m_value.object)
11586  {
11587  write_cbor(el.first);
11588  write_cbor(el.second);
11589  }
11590  break;
11591  }
11592 
11593  default:
11594  break;
11595  }
11596  }
11597 
11598  /*!
11599  @param[in] j JSON value to serialize
11600  */
11601  void write_msgpack(const BasicJsonType& j)
11602  {
11603  switch (j.type())
11604  {
11605  case value_t::null: // nil
11606  {
11607  oa->write_character(to_char_type(0xC0));
11608  break;
11609  }
11610 
11611  case value_t::boolean: // true and false
11612  {
11613  oa->write_character(j.m_value.boolean
11614  ? to_char_type(0xC3)
11615  : to_char_type(0xC2));
11616  break;
11617  }
11618 
11619  case value_t::number_integer:
11620  {
11621  if (j.m_value.number_integer >= 0)
11622  {
11623  // MessagePack does not differentiate between positive
11624  // signed integers and unsigned integers. Therefore, we used
11625  // the code from the value_t::number_unsigned case here.
11626  if (j.m_value.number_unsigned < 128)
11627  {
11628  // positive fixnum
11629  write_number(static_cast<std::uint8_t>(j.m_value.number_integer));
11630  }
11631  else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint8_t>::max)())
11632  {
11633  // uint 8
11634  oa->write_character(to_char_type(0xCC));
11635  write_number(static_cast<std::uint8_t>(j.m_value.number_integer));
11636  }
11637  else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint16_t>::max)())
11638  {
11639  // uint 16
11640  oa->write_character(to_char_type(0xCD));
11641  write_number(static_cast<std::uint16_t>(j.m_value.number_integer));
11642  }
11643  else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint32_t>::max)())
11644  {
11645  // uint 32
11646  oa->write_character(to_char_type(0xCE));
11647  write_number(static_cast<std::uint32_t>(j.m_value.number_integer));
11648  }
11649  else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint64_t>::max)())
11650  {
11651  // uint 64
11652  oa->write_character(to_char_type(0xCF));
11653  write_number(static_cast<std::uint64_t>(j.m_value.number_integer));
11654  }
11655  }
11656  else
11657  {
11658  if (j.m_value.number_integer >= -32)
11659  {
11660  // negative fixnum
11661  write_number(static_cast<std::int8_t>(j.m_value.number_integer));
11662  }
11663  else if (j.m_value.number_integer >= (std::numeric_limits<std::int8_t>::min)() and
11664  j.m_value.number_integer <= (std::numeric_limits<std::int8_t>::max)())
11665  {
11666  // int 8
11667  oa->write_character(to_char_type(0xD0));
11668  write_number(static_cast<std::int8_t>(j.m_value.number_integer));
11669  }
11670  else if (j.m_value.number_integer >= (std::numeric_limits<std::int16_t>::min)() and
11671  j.m_value.number_integer <= (std::numeric_limits<std::int16_t>::max)())
11672  {
11673  // int 16
11674  oa->write_character(to_char_type(0xD1));
11675  write_number(static_cast<std::int16_t>(j.m_value.number_integer));
11676  }
11677  else if (j.m_value.number_integer >= (std::numeric_limits<std::int32_t>::min)() and
11678  j.m_value.number_integer <= (std::numeric_limits<std::int32_t>::max)())
11679  {
11680  // int 32
11681  oa->write_character(to_char_type(0xD2));
11682  write_number(static_cast<std::int32_t>(j.m_value.number_integer));
11683  }
11684  else if (j.m_value.number_integer >= (std::numeric_limits<std::int64_t>::min)() and
11685  j.m_value.number_integer <= (std::numeric_limits<std::int64_t>::max)())
11686  {
11687  // int 64
11688  oa->write_character(to_char_type(0xD3));
11689  write_number(static_cast<std::int64_t>(j.m_value.number_integer));
11690  }
11691  }
11692  break;
11693  }
11694 
11695  case value_t::number_unsigned:
11696  {
11697  if (j.m_value.number_unsigned < 128)
11698  {
11699  // positive fixnum
11700  write_number(static_cast<std::uint8_t>(j.m_value.number_integer));
11701  }
11702  else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint8_t>::max)())
11703  {
11704  // uint 8
11705  oa->write_character(to_char_type(0xCC));
11706  write_number(static_cast<std::uint8_t>(j.m_value.number_integer));
11707  }
11708  else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint16_t>::max)())
11709  {
11710  // uint 16
11711  oa->write_character(to_char_type(0xCD));
11712  write_number(static_cast<std::uint16_t>(j.m_value.number_integer));
11713  }
11714  else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint32_t>::max)())
11715  {
11716  // uint 32
11717  oa->write_character(to_char_type(0xCE));
11718  write_number(static_cast<std::uint32_t>(j.m_value.number_integer));
11719  }
11720  else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint64_t>::max)())
11721  {
11722  // uint 64
11723  oa->write_character(to_char_type(0xCF));
11724  write_number(static_cast<std::uint64_t>(j.m_value.number_integer));
11725  }
11726  break;
11727  }
11728 
11729  case value_t::number_float:
11730  {
11731  oa->write_character(get_msgpack_float_prefix(j.m_value.number_float));
11732  write_number(j.m_value.number_float);
11733  break;
11734  }
11735 
11736  case value_t::string:
11737  {
11738  // step 1: write control byte and the string length
11739  const auto N = j.m_value.string->size();
11740  if (N <= 31)
11741  {
11742  // fixstr
11743  write_number(static_cast<std::uint8_t>(0xA0 | N));
11744  }
11745  else if (N <= (std::numeric_limits<std::uint8_t>::max)())
11746  {
11747  // str 8
11748  oa->write_character(to_char_type(0xD9));
11749  write_number(static_cast<std::uint8_t>(N));
11750  }
11751  else if (N <= (std::numeric_limits<std::uint16_t>::max)())
11752  {
11753  // str 16
11754  oa->write_character(to_char_type(0xDA));
11755  write_number(static_cast<std::uint16_t>(N));
11756  }
11757  else if (N <= (std::numeric_limits<std::uint32_t>::max)())
11758  {
11759  // str 32
11760  oa->write_character(to_char_type(0xDB));
11761  write_number(static_cast<std::uint32_t>(N));
11762  }
11763 
11764  // step 2: write the string
11765  oa->write_characters(
11766  reinterpret_cast<const CharType*>(j.m_value.string->c_str()),
11767  j.m_value.string->size());
11768  break;
11769  }
11770 
11771  case value_t::array:
11772  {
11773  // step 1: write control byte and the array size
11774  const auto N = j.m_value.array->size();
11775  if (N <= 15)
11776  {
11777  // fixarray
11778  write_number(static_cast<std::uint8_t>(0x90 | N));
11779  }
11780  else if (N <= (std::numeric_limits<std::uint16_t>::max)())
11781  {
11782  // array 16
11783  oa->write_character(to_char_type(0xDC));
11784  write_number(static_cast<std::uint16_t>(N));
11785  }
11786  else if (N <= (std::numeric_limits<std::uint32_t>::max)())
11787  {
11788  // array 32
11789  oa->write_character(to_char_type(0xDD));
11790  write_number(static_cast<std::uint32_t>(N));
11791  }
11792 
11793  // step 2: write each element
11794  for (const auto& el : *j.m_value.array)
11795  {
11796  write_msgpack(el);
11797  }
11798  break;
11799  }
11800 
11801  case value_t::object:
11802  {
11803  // step 1: write control byte and the object size
11804  const auto N = j.m_value.object->size();
11805  if (N <= 15)
11806  {
11807  // fixmap
11808  write_number(static_cast<std::uint8_t>(0x80 | (N & 0xF)));
11809  }
11810  else if (N <= (std::numeric_limits<std::uint16_t>::max)())
11811  {
11812  // map 16
11813  oa->write_character(to_char_type(0xDE));
11814  write_number(static_cast<std::uint16_t>(N));
11815  }
11816  else if (N <= (std::numeric_limits<std::uint32_t>::max)())
11817  {
11818  // map 32
11819  oa->write_character(to_char_type(0xDF));
11820  write_number(static_cast<std::uint32_t>(N));
11821  }
11822 
11823  // step 2: write each element
11824  for (const auto& el : *j.m_value.object)
11825  {
11826  write_msgpack(el.first);
11827  write_msgpack(el.second);
11828  }
11829  break;
11830  }
11831 
11832  default:
11833  break;
11834  }
11835  }
11836 
11837  /*!
11838  @param[in] j JSON value to serialize
11839  @param[in] use_count whether to use '#' prefixes (optimized format)
11840  @param[in] use_type whether to use '$' prefixes (optimized format)
11841  @param[in] add_prefix whether prefixes need to be used for this value
11842  */
11843  void write_ubjson(const BasicJsonType& j, const bool use_count,
11844  const bool use_type, const bool add_prefix = true)
11845  {
11846  switch (j.type())
11847  {
11848  case value_t::null:
11849  {
11850  if (add_prefix)
11851  {
11852  oa->write_character(to_char_type('Z'));
11853  }
11854  break;
11855  }
11856 
11857  case value_t::boolean:
11858  {
11859  if (add_prefix)
11860  {
11861  oa->write_character(j.m_value.boolean
11862  ? to_char_type('T')
11863  : to_char_type('F'));
11864  }
11865  break;
11866  }
11867 
11868  case value_t::number_integer:
11869  {
11870  write_number_with_ubjson_prefix(j.m_value.number_integer, add_prefix);
11871  break;
11872  }
11873 
11874  case value_t::number_unsigned:
11875  {
11876  write_number_with_ubjson_prefix(j.m_value.number_unsigned, add_prefix);
11877  break;
11878  }
11879 
11880  case value_t::number_float:
11881  {
11882  write_number_with_ubjson_prefix(j.m_value.number_float, add_prefix);
11883  break;
11884  }
11885 
11886  case value_t::string:
11887  {
11888  if (add_prefix)
11889  {
11890  oa->write_character(to_char_type('S'));
11891  }
11892  write_number_with_ubjson_prefix(j.m_value.string->size(), true);
11893  oa->write_characters(
11894  reinterpret_cast<const CharType*>(j.m_value.string->c_str()),
11895  j.m_value.string->size());
11896  break;
11897  }
11898 
11899  case value_t::array:
11900  {
11901  if (add_prefix)
11902  {
11903  oa->write_character(to_char_type('['));
11904  }
11905 
11906  bool prefix_required = true;
11907  if (use_type and not j.m_value.array->empty())
11908  {
11909  assert(use_count);
11910  const CharType first_prefix = ubjson_prefix(j.front());
11911  const bool same_prefix = std::all_of(j.begin() + 1, j.end(),
11912  [this, first_prefix](const BasicJsonType & v)
11913  {
11914  return ubjson_prefix(v) == first_prefix;
11915  });
11916 
11917  if (same_prefix)
11918  {
11919  prefix_required = false;
11920  oa->write_character(to_char_type('$'));
11921  oa->write_character(first_prefix);
11922  }
11923  }
11924 
11925  if (use_count)
11926  {
11927  oa->write_character(to_char_type('#'));
11928  write_number_with_ubjson_prefix(j.m_value.array->size(), true);
11929  }
11930 
11931  for (const auto& el : *j.m_value.array)
11932  {
11933  write_ubjson(el, use_count, use_type, prefix_required);
11934  }
11935 
11936  if (not use_count)
11937  {
11938  oa->write_character(to_char_type(']'));
11939  }
11940 
11941  break;
11942  }
11943 
11944  case value_t::object:
11945  {
11946  if (add_prefix)
11947  {
11948  oa->write_character(to_char_type('{'));
11949  }
11950 
11951  bool prefix_required = true;
11952  if (use_type and not j.m_value.object->empty())
11953  {
11954  assert(use_count);
11955  const CharType first_prefix = ubjson_prefix(j.front());
11956  const bool same_prefix = std::all_of(j.begin(), j.end(),
11957  [this, first_prefix](const BasicJsonType & v)
11958  {
11959  return ubjson_prefix(v) == first_prefix;
11960  });
11961 
11962  if (same_prefix)
11963  {
11964  prefix_required = false;
11965  oa->write_character(to_char_type('$'));
11966  oa->write_character(first_prefix);
11967  }
11968  }
11969 
11970  if (use_count)
11971  {
11972  oa->write_character(to_char_type('#'));
11973  write_number_with_ubjson_prefix(j.m_value.object->size(), true);
11974  }
11975 
11976  for (const auto& el : *j.m_value.object)
11977  {
11978  write_number_with_ubjson_prefix(el.first.size(), true);
11979  oa->write_characters(
11980  reinterpret_cast<const CharType*>(el.first.c_str()),
11981  el.first.size());
11982  write_ubjson(el.second, use_count, use_type, prefix_required);
11983  }
11984 
11985  if (not use_count)
11986  {
11987  oa->write_character(to_char_type('}'));
11988  }
11989 
11990  break;
11991  }
11992 
11993  default:
11994  break;
11995  }
11996  }
11997 
11998  private:
11999  //////////
12000  // BSON //
12001  //////////
12002 
12003  /*!
12004  @return The size of a BSON document entry header, including the id marker
12005  and the entry name size (and its null-terminator).
12006  */
12007  static std::size_t calc_bson_entry_header_size(const string_t& name)
12008  {
12009  const auto it = name.find(static_cast<typename string_t::value_type>(0));
12010  if (JSON_HEDLEY_UNLIKELY(it != BasicJsonType::string_t::npos))
12011  {
12012  JSON_THROW(out_of_range::create(409,
12013  "BSON key cannot contain code point U+0000 (at byte " + std::to_string(it) + ")"));
12014  }
12015 
12016  return /*id*/ 1ul + name.size() + /*zero-terminator*/1u;
12017  }
12018 
12019  /*!
12020  @brief Writes the given @a element_type and @a name to the output adapter
12021  */
12023  const std::uint8_t element_type)
12024  {
12025  oa->write_character(to_char_type(element_type)); // boolean
12026  oa->write_characters(
12027  reinterpret_cast<const CharType*>(name.c_str()),
12028  name.size() + 1u);
12029  }
12030 
12031  /*!
12032  @brief Writes a BSON element with key @a name and boolean value @a value
12033  */
12035  const bool value)
12036  {
12037  write_bson_entry_header(name, 0x08);
12038  oa->write_character(value ? to_char_type(0x01) : to_char_type(0x00));
12039  }
12040 
12041  /*!
12042  @brief Writes a BSON element with key @a name and double value @a value
12043  */
12045  const double value)
12046  {
12047  write_bson_entry_header(name, 0x01);
12048  write_number<double, true>(value);
12049  }
12050 
12051  /*!
12052  @return The size of the BSON-encoded string in @a value
12053  */
12054  static std::size_t calc_bson_string_size(const string_t& value)
12055  {
12056  return sizeof(std::int32_t) + value.size() + 1ul;
12057  }
12058 
12059  /*!
12060  @brief Writes a BSON element with key @a name and string value @a value
12061  */
12063  const string_t& value)
12064  {
12065  write_bson_entry_header(name, 0x02);
12066 
12067  write_number<std::int32_t, true>(static_cast<std::int32_t>(value.size() + 1ul));
12068  oa->write_characters(
12069  reinterpret_cast<const CharType*>(value.c_str()),
12070  value.size() + 1);
12071  }
12072 
12073  /*!
12074  @brief Writes a BSON element with key @a name and null value
12075  */
12077  {
12078  write_bson_entry_header(name, 0x0A);
12079  }
12080 
12081  /*!
12082  @return The size of the BSON-encoded integer @a value
12083  */
12084  static std::size_t calc_bson_integer_size(const std::int64_t value)
12085  {
12086  return (std::numeric_limits<std::int32_t>::min)() <= value and value <= (std::numeric_limits<std::int32_t>::max)()
12087  ? sizeof(std::int32_t)
12088  : sizeof(std::int64_t);
12089  }
12090 
12091  /*!
12092  @brief Writes a BSON element with key @a name and integer @a value
12093  */
12095  const std::int64_t value)
12096  {
12097  if ((std::numeric_limits<std::int32_t>::min)() <= value and value <= (std::numeric_limits<std::int32_t>::max)())
12098  {
12099  write_bson_entry_header(name, 0x10); // int32
12100  write_number<std::int32_t, true>(static_cast<std::int32_t>(value));
12101  }
12102  else
12103  {
12104  write_bson_entry_header(name, 0x12); // int64
12105  write_number<std::int64_t, true>(static_cast<std::int64_t>(value));
12106  }
12107  }
12108 
12109  /*!
12110  @return The size of the BSON-encoded unsigned integer in @a j
12111  */
12112  static constexpr std::size_t calc_bson_unsigned_size(const std::uint64_t value) noexcept
12113  {
12114  return (value <= static_cast<std::uint64_t>((std::numeric_limits<std::int32_t>::max)()))
12115  ? sizeof(std::int32_t)
12116  : sizeof(std::int64_t);
12117  }
12118 
12119  /*!
12120  @brief Writes a BSON element with key @a name and unsigned @a value
12121  */
12123  const std::uint64_t value)
12124  {
12125  if (value <= static_cast<std::uint64_t>((std::numeric_limits<std::int32_t>::max)()))
12126  {
12127  write_bson_entry_header(name, 0x10 /* int32 */);
12128  write_number<std::int32_t, true>(static_cast<std::int32_t>(value));
12129  }
12130  else if (value <= static_cast<std::uint64_t>((std::numeric_limits<std::int64_t>::max)()))
12131  {
12132  write_bson_entry_header(name, 0x12 /* int64 */);
12133  write_number<std::int64_t, true>(static_cast<std::int64_t>(value));
12134  }
12135  else
12136  {
12137  JSON_THROW(out_of_range::create(407, "integer number " + std::to_string(value) + " cannot be represented by BSON as it does not fit int64"));
12138  }
12139  }
12140 
12141  /*!
12142  @brief Writes a BSON element with key @a name and object @a value
12143  */
12145  const typename BasicJsonType::object_t& value)
12146  {
12147  write_bson_entry_header(name, 0x03); // object
12148  write_bson_object(value);
12149  }
12150 
12151  /*!
12152  @return The size of the BSON-encoded array @a value
12153  */
12154  static std::size_t calc_bson_array_size(const typename BasicJsonType::array_t& value)
12155  {
12156  std::size_t array_index = 0ul;
12157 
12158  const std::size_t embedded_document_size = std::accumulate(std::begin(value), std::end(value), 0ul, [&array_index](std::size_t result, const typename BasicJsonType::array_t::value_type & el)
12159  {
12160  return result + calc_bson_element_size(std::to_string(array_index++), el);
12161  });
12162 
12163  return sizeof(std::int32_t) + embedded_document_size + 1ul;
12164  }
12165 
12166  /*!
12167  @brief Writes a BSON element with key @a name and array @a value
12168  */
12170  const typename BasicJsonType::array_t& value)
12171  {
12172  write_bson_entry_header(name, 0x04); // array
12173  write_number<std::int32_t, true>(static_cast<std::int32_t>(calc_bson_array_size(value)));
12174 
12175  std::size_t array_index = 0ul;
12176 
12177  for (const auto& el : value)
12178  {
12179  write_bson_element(std::to_string(array_index++), el);
12180  }
12181 
12182  oa->write_character(to_char_type(0x00));
12183  }
12184 
12185  /*!
12186  @brief Calculates the size necessary to serialize the JSON value @a j with its @a name
12187  @return The calculated size for the BSON document entry for @a j with the given @a name.
12188  */
12189  static std::size_t calc_bson_element_size(const string_t& name,
12190  const BasicJsonType& j)
12191  {
12192  const auto header_size = calc_bson_entry_header_size(name);
12193  switch (j.type())
12194  {
12195  case value_t::object:
12196  return header_size + calc_bson_object_size(*j.m_value.object);
12197 
12198  case value_t::array:
12199  return header_size + calc_bson_array_size(*j.m_value.array);
12200 
12201  case value_t::boolean:
12202  return header_size + 1ul;
12203 
12204  case value_t::number_float:
12205  return header_size + 8ul;
12206 
12207  case value_t::number_integer:
12208  return header_size + calc_bson_integer_size(j.m_value.number_integer);
12209 
12210  case value_t::number_unsigned:
12211  return header_size + calc_bson_unsigned_size(j.m_value.number_unsigned);
12212 
12213  case value_t::string:
12214  return header_size + calc_bson_string_size(*j.m_value.string);
12215 
12216  case value_t::null:
12217  return header_size + 0ul;
12218 
12219  // LCOV_EXCL_START
12220  default:
12221  assert(false);
12222  return 0ul;
12223  // LCOV_EXCL_STOP
12224  }
12225  }
12226 
12227  /*!
12228  @brief Serializes the JSON value @a j to BSON and associates it with the
12229  key @a name.
12230  @param name The name to associate with the JSON entity @a j within the
12231  current BSON document
12232  @return The size of the BSON entry
12233  */
12235  const BasicJsonType& j)
12236  {
12237  switch (j.type())
12238  {
12239  case value_t::object:
12240  return write_bson_object_entry(name, *j.m_value.object);
12241 
12242  case value_t::array:
12243  return write_bson_array(name, *j.m_value.array);
12244 
12245  case value_t::boolean:
12246  return write_bson_boolean(name, j.m_value.boolean);
12247 
12248  case value_t::number_float:
12249  return write_bson_double(name, j.m_value.number_float);
12250 
12251  case value_t::number_integer:
12252  return write_bson_integer(name, j.m_value.number_integer);
12253 
12254  case value_t::number_unsigned:
12255  return write_bson_unsigned(name, j.m_value.number_unsigned);
12256 
12257  case value_t::string:
12258  return write_bson_string(name, *j.m_value.string);
12259 
12260  case value_t::null:
12261  return write_bson_null(name);
12262 
12263  // LCOV_EXCL_START
12264  default:
12265  assert(false);
12266  return;
12267  // LCOV_EXCL_STOP
12268  }
12269  }
12270 
12271  /*!
12272  @brief Calculates the size of the BSON serialization of the given
12273  JSON-object @a j.
12274  @param[in] j JSON value to serialize
12275  @pre j.type() == value_t::object
12276  */
12277  static std::size_t calc_bson_object_size(const typename BasicJsonType::object_t& value)
12278  {
12279  std::size_t document_size = std::accumulate(value.begin(), value.end(), 0ul,
12280  [](size_t result, const typename BasicJsonType::object_t::value_type & el)
12281  {
12282  return result += calc_bson_element_size(el.first, el.second);
12283  });
12284 
12285  return sizeof(std::int32_t) + document_size + 1ul;
12286  }
12287 
12288  /*!
12289  @param[in] j JSON value to serialize
12290  @pre j.type() == value_t::object
12291  */
12292  void write_bson_object(const typename BasicJsonType::object_t& value)
12293  {
12294  write_number<std::int32_t, true>(static_cast<std::int32_t>(calc_bson_object_size(value)));
12295 
12296  for (const auto& el : value)
12297  {
12298  write_bson_element(el.first, el.second);
12299  }
12300 
12301  oa->write_character(to_char_type(0x00));
12302  }
12303 
12304  //////////
12305  // CBOR //
12306  //////////
12307 
12308  static constexpr CharType get_cbor_float_prefix(float /*unused*/)
12309  {
12310  return to_char_type(0xFA); // Single-Precision Float
12311  }
12312 
12313  static constexpr CharType get_cbor_float_prefix(double /*unused*/)
12314  {
12315  return to_char_type(0xFB); // Double-Precision Float
12316  }
12317 
12318  /////////////
12319  // MsgPack //
12320  /////////////
12321 
12322  static constexpr CharType get_msgpack_float_prefix(float /*unused*/)
12323  {
12324  return to_char_type(0xCA); // float 32
12325  }
12326 
12327  static constexpr CharType get_msgpack_float_prefix(double /*unused*/)
12328  {
12329  return to_char_type(0xCB); // float 64
12330  }
12331 
12332  ////////////
12333  // UBJSON //
12334  ////////////
12335 
12336  // UBJSON: write number (floating point)
12337  template<typename NumberType, typename std::enable_if<
12339  void write_number_with_ubjson_prefix(const NumberType n,
12340  const bool add_prefix)
12341  {
12342  if (add_prefix)
12343  {
12344  oa->write_character(get_ubjson_float_prefix(n));
12345  }
12346  write_number(n);
12347  }
12348 
12349  // UBJSON: write number (unsigned integer)
12350  template<typename NumberType, typename std::enable_if<
12352  void write_number_with_ubjson_prefix(const NumberType n,
12353  const bool add_prefix)
12354  {
12355  if (n <= static_cast<std::uint64_t>((std::numeric_limits<std::int8_t>::max)()))
12356  {
12357  if (add_prefix)
12358  {
12359  oa->write_character(to_char_type('i')); // int8
12360  }
12361  write_number(static_cast<std::uint8_t>(n));
12362  }
12363  else if (n <= (std::numeric_limits<std::uint8_t>::max)())
12364  {
12365  if (add_prefix)
12366  {
12367  oa->write_character(to_char_type('U')); // uint8
12368  }
12369  write_number(static_cast<std::uint8_t>(n));
12370  }
12371  else if (n <= static_cast<std::uint64_t>((std::numeric_limits<std::int16_t>::max)()))
12372  {
12373  if (add_prefix)
12374  {
12375  oa->write_character(to_char_type('I')); // int16
12376  }
12377  write_number(static_cast<std::int16_t>(n));
12378  }
12379  else if (n <= static_cast<std::uint64_t>((std::numeric_limits<std::int32_t>::max)()))
12380  {
12381  if (add_prefix)
12382  {
12383  oa->write_character(to_char_type('l')); // int32
12384  }
12385  write_number(static_cast<std::int32_t>(n));
12386  }
12387  else if (n <= static_cast<std::uint64_t>((std::numeric_limits<std::int64_t>::max)()))
12388  {
12389  if (add_prefix)
12390  {
12391  oa->write_character(to_char_type('L')); // int64
12392  }
12393  write_number(static_cast<std::int64_t>(n));
12394  }
12395  else
12396  {
12397  JSON_THROW(out_of_range::create(407, "integer number " + std::to_string(n) + " cannot be represented by UBJSON as it does not fit int64"));
12398  }
12399  }
12400 
12401  // UBJSON: write number (signed integer)
12402  template<typename NumberType, typename std::enable_if<
12405  void write_number_with_ubjson_prefix(const NumberType n,
12406  const bool add_prefix)
12407  {
12408  if ((std::numeric_limits<std::int8_t>::min)() <= n and n <= (std::numeric_limits<std::int8_t>::max)())
12409  {
12410  if (add_prefix)
12411  {
12412  oa->write_character(to_char_type('i')); // int8
12413  }
12414  write_number(static_cast<std::int8_t>(n));
12415  }
12416  else if (static_cast<std::int64_t>((std::numeric_limits<std::uint8_t>::min)()) <= n and n <= static_cast<std::int64_t>((std::numeric_limits<std::uint8_t>::max)()))
12417  {
12418  if (add_prefix)
12419  {
12420  oa->write_character(to_char_type('U')); // uint8
12421  }
12422  write_number(static_cast<std::uint8_t>(n));
12423  }
12424  else if ((std::numeric_limits<std::int16_t>::min)() <= n and n <= (std::numeric_limits<std::int16_t>::max)())
12425  {
12426  if (add_prefix)
12427  {
12428  oa->write_character(to_char_type('I')); // int16
12429  }
12430  write_number(static_cast<std::int16_t>(n));
12431  }
12432  else if ((std::numeric_limits<std::int32_t>::min)() <= n and n <= (std::numeric_limits<std::int32_t>::max)())
12433  {
12434  if (add_prefix)
12435  {
12436  oa->write_character(to_char_type('l')); // int32
12437  }
12438  write_number(static_cast<std::int32_t>(n));
12439  }
12440  else if ((std::numeric_limits<std::int64_t>::min)() <= n and n <= (std::numeric_limits<std::int64_t>::max)())
12441  {
12442  if (add_prefix)
12443  {
12444  oa->write_character(to_char_type('L')); // int64
12445  }
12446  write_number(static_cast<std::int64_t>(n));
12447  }
12448  // LCOV_EXCL_START
12449  else
12450  {
12451  JSON_THROW(out_of_range::create(407, "integer number " + std::to_string(n) + " cannot be represented by UBJSON as it does not fit int64"));
12452  }
12453  // LCOV_EXCL_STOP
12454  }
12455 
12456  /*!
12457  @brief determine the type prefix of container values
12458 
12459  @note This function does not need to be 100% accurate when it comes to
12460  integer limits. In case a number exceeds the limits of int64_t,
12461  this will be detected by a later call to function
12462  write_number_with_ubjson_prefix. Therefore, we return 'L' for any
12463  value that does not fit the previous limits.
12464  */
12465  CharType ubjson_prefix(const BasicJsonType& j) const noexcept
12466  {
12467  switch (j.type())
12468  {
12469  case value_t::null:
12470  return 'Z';
12471 
12472  case value_t::boolean:
12473  return j.m_value.boolean ? 'T' : 'F';
12474 
12475  case value_t::number_integer:
12476  {
12477  if ((std::numeric_limits<std::int8_t>::min)() <= j.m_value.number_integer and j.m_value.number_integer <= (std::numeric_limits<std::int8_t>::max)())
12478  {
12479  return 'i';
12480  }
12481  if ((std::numeric_limits<std::uint8_t>::min)() <= j.m_value.number_integer and j.m_value.number_integer <= (std::numeric_limits<std::uint8_t>::max)())
12482  {
12483  return 'U';
12484  }
12485  if ((std::numeric_limits<std::int16_t>::min)() <= j.m_value.number_integer and j.m_value.number_integer <= (std::numeric_limits<std::int16_t>::max)())
12486  {
12487  return 'I';
12488  }
12489  if ((std::numeric_limits<std::int32_t>::min)() <= j.m_value.number_integer and j.m_value.number_integer <= (std::numeric_limits<std::int32_t>::max)())
12490  {
12491  return 'l';
12492  }
12493  // no check and assume int64_t (see note above)
12494  return 'L';
12495  }
12496 
12497  case value_t::number_unsigned:
12498  {
12499  if (j.m_value.number_unsigned <= static_cast<std::uint64_t>((std::numeric_limits<std::int8_t>::max)()))
12500  {
12501  return 'i';
12502  }
12503  if (j.m_value.number_unsigned <= static_cast<std::uint64_t>((std::numeric_limits<std::uint8_t>::max)()))
12504  {
12505  return 'U';
12506  }
12507  if (j.m_value.number_unsigned <= static_cast<std::uint64_t>((std::numeric_limits<std::int16_t>::max)()))
12508  {
12509  return 'I';
12510  }
12511  if (j.m_value.number_unsigned <= static_cast<std::uint64_t>((std::numeric_limits<std::int32_t>::max)()))
12512  {
12513  return 'l';
12514  }
12515  // no check and assume int64_t (see note above)
12516  return 'L';
12517  }
12518 
12519  case value_t::number_float:
12520  return get_ubjson_float_prefix(j.m_value.number_float);
12521 
12522  case value_t::string:
12523  return 'S';
12524 
12525  case value_t::array:
12526  return '[';
12527 
12528  case value_t::object:
12529  return '{';
12530 
12531  default: // discarded values
12532  return 'N';
12533  }
12534  }
12535 
12536  static constexpr CharType get_ubjson_float_prefix(float /*unused*/)
12537  {
12538  return 'd'; // float 32
12539  }
12540 
12541  static constexpr CharType get_ubjson_float_prefix(double /*unused*/)
12542  {
12543  return 'D'; // float 64
12544  }
12545 
12546  ///////////////////////
12547  // Utility functions //
12548  ///////////////////////
12549 
12550  /*
12551  @brief write a number to output input
12552  @param[in] n number of type @a NumberType
12553  @tparam NumberType the type of the number
12554  @tparam OutputIsLittleEndian Set to true if output data is
12555  required to be little endian
12556 
12557  @note This function needs to respect the system's endianess, because bytes
12558  in CBOR, MessagePack, and UBJSON are stored in network order (big
12559  endian) and therefore need reordering on little endian systems.
12560  */
12561  template<typename NumberType, bool OutputIsLittleEndian = false>
12562  void write_number(const NumberType n)
12563  {
12564  // step 1: write number to array of length NumberType
12565  std::array<CharType, sizeof(NumberType)> vec;
12566  std::memcpy(vec.data(), &n, sizeof(NumberType));
12567 
12568  // step 2: write array to output (with possible reordering)
12569  if (is_little_endian != OutputIsLittleEndian)
12570  {
12571  // reverse byte order prior to conversion if necessary
12572  std::reverse(vec.begin(), vec.end());
12573  }
12574 
12575  oa->write_characters(vec.data(), sizeof(NumberType));
12576  }
12577 
12578  public:
12579  // The following to_char_type functions are implement the conversion
12580  // between uint8_t and CharType. In case CharType is not unsigned,
12581  // such a conversion is required to allow values greater than 128.
12582  // See <https://github.com/nlohmann/json/issues/1286> for a discussion.
12583  template < typename C = CharType,
12585  static constexpr CharType to_char_type(std::uint8_t x) noexcept
12586  {
12587  return *reinterpret_cast<char*>(&x);
12588  }
12589 
12590  template < typename C = CharType,
12592  static CharType to_char_type(std::uint8_t x) noexcept
12593  {
12594  static_assert(sizeof(std::uint8_t) == sizeof(CharType), "size of CharType must be equal to std::uint8_t");
12595  static_assert(std::is_pod<CharType>::value, "CharType must be POD");
12596  CharType result;
12597  std::memcpy(&result, &x, sizeof(x));
12598  return result;
12599  }
12600 
12601  template<typename C = CharType,
12603  static constexpr CharType to_char_type(std::uint8_t x) noexcept
12604  {
12605  return x;
12606  }
12607 
12608  template < typename InputCharType, typename C = CharType,
12609  enable_if_t <
12613  > * = nullptr >
12614  static constexpr CharType to_char_type(InputCharType x) noexcept
12615  {
12616  return x;
12617  }
12618 
12619  private:
12620  /// whether we can assume little endianess
12621  const bool is_little_endian = binary_reader<BasicJsonType>::little_endianess();
12622 
12623  /// the output
12625 };
12626 } // namespace detail
12627 } // namespace nlohmann
12628 
12629 // #include <nlohmann/detail/output/output_adapters.hpp>
12630 
12631 // #include <nlohmann/detail/output/serializer.hpp>
12632 
12633 
12634 #include <algorithm> // reverse, remove, fill, find, none_of
12635 #include <array> // array
12636 #include <cassert> // assert
12637 #include <ciso646> // and, or
12638 #include <clocale> // localeconv, lconv
12639 #include <cmath> // labs, isfinite, isnan, signbit
12640 #include <cstddef> // size_t, ptrdiff_t
12641 #include <cstdint> // uint8_t
12642 #include <cstdio> // snprintf
12643 #include <limits> // numeric_limits
12644 #include <string> // string
12645 #include <type_traits> // is_same
12646 #include <utility> // move
12647 
12648 // #include <nlohmann/detail/conversions/to_chars.hpp>
12649 
12650 
12651 #include <array> // array
12652 #include <cassert> // assert
12653 #include <ciso646> // or, and, not
12654 #include <cmath> // signbit, isfinite
12655 #include <cstdint> // intN_t, uintN_t
12656 #include <cstring> // memcpy, memmove
12657 #include <limits> // numeric_limits
12658 #include <type_traits> // conditional
12659 // #include <nlohmann/detail/macro_scope.hpp>
12660 
12661 
12662 namespace nlohmann
12663 {
12664 namespace detail
12665 {
12666 
12667 /*!
12668 @brief implements the Grisu2 algorithm for binary to decimal floating-point
12669 conversion.
12670 
12671 This implementation is a slightly modified version of the reference
12672 implementation which may be obtained from
12673 http://florian.loitsch.com/publications (bench.tar.gz).
12674 
12675 The code is distributed under the MIT license, Copyright (c) 2009 Florian Loitsch.
12676 
12677 For a detailed description of the algorithm see:
12678 
12679 [1] Loitsch, "Printing Floating-Point Numbers Quickly and Accurately with
12680  Integers", Proceedings of the ACM SIGPLAN 2010 Conference on Programming
12681  Language Design and Implementation, PLDI 2010
12682 [2] Burger, Dybvig, "Printing Floating-Point Numbers Quickly and Accurately",
12683  Proceedings of the ACM SIGPLAN 1996 Conference on Programming Language
12684  Design and Implementation, PLDI 1996
12685 */
12686 namespace dtoa_impl
12687 {
12688 
12689 template <typename Target, typename Source>
12690 Target reinterpret_bits(const Source source)
12691 {
12692  static_assert(sizeof(Target) == sizeof(Source), "size mismatch");
12693 
12694  Target target;
12695  std::memcpy(&target, &source, sizeof(Source));
12696  return target;
12697 }
12698 
12699 struct diyfp // f * 2^e
12700 {
12701  static constexpr int kPrecision = 64; // = q
12702 
12703  std::uint64_t f = 0;
12704  int e = 0;
12705 
12706  constexpr diyfp(std::uint64_t f_, int e_) noexcept : f(f_), e(e_) {}
12707 
12708  /*!
12709  @brief returns x - y
12710  @pre x.e == y.e and x.f >= y.f
12711  */
12712  static diyfp sub(const diyfp& x, const diyfp& y) noexcept
12713  {
12714  assert(x.e == y.e);
12715  assert(x.f >= y.f);
12716 
12717  return {x.f - y.f, x.e};
12718  }
12719 
12720  /*!
12721  @brief returns x * y
12722  @note The result is rounded. (Only the upper q bits are returned.)
12723  */
12724  static diyfp mul(const diyfp& x, const diyfp& y) noexcept
12725  {
12726  static_assert(kPrecision == 64, "internal error");
12727 
12728  // Computes:
12729  // f = round((x.f * y.f) / 2^q)
12730  // e = x.e + y.e + q
12731 
12732  // Emulate the 64-bit * 64-bit multiplication:
12733  //
12734  // p = u * v
12735  // = (u_lo + 2^32 u_hi) (v_lo + 2^32 v_hi)
12736  // = (u_lo v_lo ) + 2^32 ((u_lo v_hi ) + (u_hi v_lo )) + 2^64 (u_hi v_hi )
12737  // = (p0 ) + 2^32 ((p1 ) + (p2 )) + 2^64 (p3 )
12738  // = (p0_lo + 2^32 p0_hi) + 2^32 ((p1_lo + 2^32 p1_hi) + (p2_lo + 2^32 p2_hi)) + 2^64 (p3 )
12739  // = (p0_lo ) + 2^32 (p0_hi + p1_lo + p2_lo ) + 2^64 (p1_hi + p2_hi + p3)
12740  // = (p0_lo ) + 2^32 (Q ) + 2^64 (H )
12741  // = (p0_lo ) + 2^32 (Q_lo + 2^32 Q_hi ) + 2^64 (H )
12742  //
12743  // (Since Q might be larger than 2^32 - 1)
12744  //
12745  // = (p0_lo + 2^32 Q_lo) + 2^64 (Q_hi + H)
12746  //
12747  // (Q_hi + H does not overflow a 64-bit int)
12748  //
12749  // = p_lo + 2^64 p_hi
12750 
12751  const std::uint64_t u_lo = x.f & 0xFFFFFFFFu;
12752  const std::uint64_t u_hi = x.f >> 32u;
12753  const std::uint64_t v_lo = y.f & 0xFFFFFFFFu;
12754  const std::uint64_t v_hi = y.f >> 32u;
12755 
12756  const std::uint64_t p0 = u_lo * v_lo;
12757  const std::uint64_t p1 = u_lo * v_hi;
12758  const std::uint64_t p2 = u_hi * v_lo;
12759  const std::uint64_t p3 = u_hi * v_hi;
12760 
12761  const std::uint64_t p0_hi = p0 >> 32u;
12762  const std::uint64_t p1_lo = p1 & 0xFFFFFFFFu;
12763  const std::uint64_t p1_hi = p1 >> 32u;
12764  const std::uint64_t p2_lo = p2 & 0xFFFFFFFFu;
12765  const std::uint64_t p2_hi = p2 >> 32u;
12766 
12767  std::uint64_t Q = p0_hi + p1_lo + p2_lo;
12768 
12769  // The full product might now be computed as
12770  //
12771  // p_hi = p3 + p2_hi + p1_hi + (Q >> 32)
12772  // p_lo = p0_lo + (Q << 32)
12773  //
12774  // But in this particular case here, the full p_lo is not required.
12775  // Effectively we only need to add the highest bit in p_lo to p_hi (and
12776  // Q_hi + 1 does not overflow).
12777 
12778  Q += std::uint64_t{1} << (64u - 32u - 1u); // round, ties up
12779 
12780  const std::uint64_t h = p3 + p2_hi + p1_hi + (Q >> 32u);
12781 
12782  return {h, x.e + y.e + 64};
12783  }
12784 
12785  /*!
12786  @brief normalize x such that the significand is >= 2^(q-1)
12787  @pre x.f != 0
12788  */
12789  static diyfp normalize(diyfp x) noexcept
12790  {
12791  assert(x.f != 0);
12792 
12793  while ((x.f >> 63u) == 0)
12794  {
12795  x.f <<= 1u;
12796  x.e--;
12797  }
12798 
12799  return x;
12800  }
12801 
12802  /*!
12803  @brief normalize x such that the result has the exponent E
12804  @pre e >= x.e and the upper e - x.e bits of x.f must be zero.
12805  */
12806  static diyfp normalize_to(const diyfp& x, const int target_exponent) noexcept
12807  {
12808  const int delta = x.e - target_exponent;
12809 
12810  assert(delta >= 0);
12811  assert(((x.f << delta) >> delta) == x.f);
12812 
12813  return {x.f << delta, target_exponent};
12814  }
12815 };
12816 
12818 {
12822 };
12823 
12824 /*!
12825 Compute the (normalized) diyfp representing the input number 'value' and its
12826 boundaries.
12827 
12828 @pre value must be finite and positive
12829 */
12830 template <typename FloatType>
12832 {
12833  assert(std::isfinite(value));
12834  assert(value > 0);
12835 
12836  // Convert the IEEE representation into a diyfp.
12837  //
12838  // If v is denormal:
12839  // value = 0.F * 2^(1 - bias) = ( F) * 2^(1 - bias - (p-1))
12840  // If v is normalized:
12841  // value = 1.F * 2^(E - bias) = (2^(p-1) + F) * 2^(E - bias - (p-1))
12842 
12843  static_assert(std::numeric_limits<FloatType>::is_iec559,
12844  "internal error: dtoa_short requires an IEEE-754 floating-point implementation");
12845 
12846  constexpr int kPrecision = std::numeric_limits<FloatType>::digits; // = p (includes the hidden bit)
12847  constexpr int kBias = std::numeric_limits<FloatType>::max_exponent - 1 + (kPrecision - 1);
12848  constexpr int kMinExp = 1 - kBias;
12849  constexpr std::uint64_t kHiddenBit = std::uint64_t{1} << (kPrecision - 1); // = 2^(p-1)
12850 
12852 
12853  const std::uint64_t bits = reinterpret_bits<bits_type>(value);
12854  const std::uint64_t E = bits >> (kPrecision - 1);
12855  const std::uint64_t F = bits & (kHiddenBit - 1);
12856 
12857  const bool is_denormal = E == 0;
12858  const diyfp v = is_denormal
12859  ? diyfp(F, kMinExp)
12860  : diyfp(F + kHiddenBit, static_cast<int>(E) - kBias);
12861 
12862  // Compute the boundaries m- and m+ of the floating-point value
12863  // v = f * 2^e.
12864  //
12865  // Determine v- and v+, the floating-point predecessor and successor if v,
12866  // respectively.
12867  //
12868  // v- = v - 2^e if f != 2^(p-1) or e == e_min (A)
12869  // = v - 2^(e-1) if f == 2^(p-1) and e > e_min (B)
12870  //
12871  // v+ = v + 2^e
12872  //
12873  // Let m- = (v- + v) / 2 and m+ = (v + v+) / 2. All real numbers _strictly_
12874  // between m- and m+ round to v, regardless of how the input rounding
12875  // algorithm breaks ties.
12876  //
12877  // ---+-------------+-------------+-------------+-------------+--- (A)
12878  // v- m- v m+ v+
12879  //
12880  // -----------------+------+------+-------------+-------------+--- (B)
12881  // v- m- v m+ v+
12882 
12883  const bool lower_boundary_is_closer = F == 0 and E > 1;
12884  const diyfp m_plus = diyfp(2 * v.f + 1, v.e - 1);
12885  const diyfp m_minus = lower_boundary_is_closer
12886  ? diyfp(4 * v.f - 1, v.e - 2) // (B)
12887  : diyfp(2 * v.f - 1, v.e - 1); // (A)
12888 
12889  // Determine the normalized w+ = m+.
12890  const diyfp w_plus = diyfp::normalize(m_plus);
12891 
12892  // Determine w- = m- such that e_(w-) = e_(w+).
12893  const diyfp w_minus = diyfp::normalize_to(m_minus, w_plus.e);
12894 
12895  return {diyfp::normalize(v), w_minus, w_plus};
12896 }
12897 
12898 // Given normalized diyfp w, Grisu needs to find a (normalized) cached
12899 // power-of-ten c, such that the exponent of the product c * w = f * 2^e lies
12900 // within a certain range [alpha, gamma] (Definition 3.2 from [1])
12901 //
12902 // alpha <= e = e_c + e_w + q <= gamma
12903 //
12904 // or
12905 //
12906 // f_c * f_w * 2^alpha <= f_c 2^(e_c) * f_w 2^(e_w) * 2^q
12907 // <= f_c * f_w * 2^gamma
12908 //
12909 // Since c and w are normalized, i.e. 2^(q-1) <= f < 2^q, this implies
12910 //
12911 // 2^(q-1) * 2^(q-1) * 2^alpha <= c * w * 2^q < 2^q * 2^q * 2^gamma
12912 //
12913 // or
12914 //
12915 // 2^(q - 2 + alpha) <= c * w < 2^(q + gamma)
12916 //
12917 // The choice of (alpha,gamma) determines the size of the table and the form of
12918 // the digit generation procedure. Using (alpha,gamma)=(-60,-32) works out well
12919 // in practice:
12920 //
12921 // The idea is to cut the number c * w = f * 2^e into two parts, which can be
12922 // processed independently: An integral part p1, and a fractional part p2:
12923 //
12924 // f * 2^e = ( (f div 2^-e) * 2^-e + (f mod 2^-e) ) * 2^e
12925 // = (f div 2^-e) + (f mod 2^-e) * 2^e
12926 // = p1 + p2 * 2^e
12927 //
12928 // The conversion of p1 into decimal form requires a series of divisions and
12929 // modulos by (a power of) 10. These operations are faster for 32-bit than for
12930 // 64-bit integers, so p1 should ideally fit into a 32-bit integer. This can be
12931 // achieved by choosing
12932 //
12933 // -e >= 32 or e <= -32 := gamma
12934 //
12935 // In order to convert the fractional part
12936 //
12937 // p2 * 2^e = p2 / 2^-e = d[-1] / 10^1 + d[-2] / 10^2 + ...
12938 //
12939 // into decimal form, the fraction is repeatedly multiplied by 10 and the digits
12940 // d[-i] are extracted in order:
12941 //
12942 // (10 * p2) div 2^-e = d[-1]
12943 // (10 * p2) mod 2^-e = d[-2] / 10^1 + ...
12944 //
12945 // The multiplication by 10 must not overflow. It is sufficient to choose
12946 //
12947 // 10 * p2 < 16 * p2 = 2^4 * p2 <= 2^64.
12948 //
12949 // Since p2 = f mod 2^-e < 2^-e,
12950 //
12951 // -e <= 60 or e >= -60 := alpha
12952 
12953 constexpr int kAlpha = -60;
12954 constexpr int kGamma = -32;
12955 
12956 struct cached_power // c = f * 2^e ~= 10^k
12957 {
12958  std::uint64_t f;
12959  int e;
12960  int k;
12961 };
12962 
12963 /*!
12964 For a normalized diyfp w = f * 2^e, this function returns a (normalized) cached
12965 power-of-ten c = f_c * 2^e_c, such that the exponent of the product w * c
12966 satisfies (Definition 3.2 from [1])
12967 
12968  alpha <= e_c + e + q <= gamma.
12969 */
12971 {
12972  // Now
12973  //
12974  // alpha <= e_c + e + q <= gamma (1)
12975  // ==> f_c * 2^alpha <= c * 2^e * 2^q
12976  //
12977  // and since the c's are normalized, 2^(q-1) <= f_c,
12978  //
12979  // ==> 2^(q - 1 + alpha) <= c * 2^(e + q)
12980  // ==> 2^(alpha - e - 1) <= c
12981  //
12982  // If c were an exact power of ten, i.e. c = 10^k, one may determine k as
12983  //
12984  // k = ceil( log_10( 2^(alpha - e - 1) ) )
12985  // = ceil( (alpha - e - 1) * log_10(2) )
12986  //
12987  // From the paper:
12988  // "In theory the result of the procedure could be wrong since c is rounded,
12989  // and the computation itself is approximated [...]. In practice, however,
12990  // this simple function is sufficient."
12991  //
12992  // For IEEE double precision floating-point numbers converted into
12993  // normalized diyfp's w = f * 2^e, with q = 64,
12994  //
12995  // e >= -1022 (min IEEE exponent)
12996  // -52 (p - 1)
12997  // -52 (p - 1, possibly normalize denormal IEEE numbers)
12998  // -11 (normalize the diyfp)
12999  // = -1137
13000  //
13001  // and
13002  //
13003  // e <= +1023 (max IEEE exponent)
13004  // -52 (p - 1)
13005  // -11 (normalize the diyfp)
13006  // = 960
13007  //
13008  // This binary exponent range [-1137,960] results in a decimal exponent
13009  // range [-307,324]. One does not need to store a cached power for each
13010  // k in this range. For each such k it suffices to find a cached power
13011  // such that the exponent of the product lies in [alpha,gamma].
13012  // This implies that the difference of the decimal exponents of adjacent
13013  // table entries must be less than or equal to
13014  //
13015  // floor( (gamma - alpha) * log_10(2) ) = 8.
13016  //
13017  // (A smaller distance gamma-alpha would require a larger table.)
13018 
13019  // NB:
13020  // Actually this function returns c, such that -60 <= e_c + e + 64 <= -34.
13021 
13022  constexpr int kCachedPowersMinDecExp = -300;
13023  constexpr int kCachedPowersDecStep = 8;
13024 
13025  static constexpr std::array<cached_power, 79> kCachedPowers =
13026  {
13027  {
13028  { 0xAB70FE17C79AC6CA, -1060, -300 },
13029  { 0xFF77B1FCBEBCDC4F, -1034, -292 },
13030  { 0xBE5691EF416BD60C, -1007, -284 },
13031  { 0x8DD01FAD907FFC3C, -980, -276 },
13032  { 0xD3515C2831559A83, -954, -268 },
13033  { 0x9D71AC8FADA6C9B5, -927, -260 },
13034  { 0xEA9C227723EE8BCB, -901, -252 },
13035  { 0xAECC49914078536D, -874, -244 },
13036  { 0x823C12795DB6CE57, -847, -236 },
13037  { 0xC21094364DFB5637, -821, -228 },
13038  { 0x9096EA6F3848984F, -794, -220 },
13039  { 0xD77485CB25823AC7, -768, -212 },
13040  { 0xA086CFCD97BF97F4, -741, -204 },
13041  { 0xEF340A98172AACE5, -715, -196 },
13042  { 0xB23867FB2A35B28E, -688, -188 },
13043  { 0x84C8D4DFD2C63F3B, -661, -180 },
13044  { 0xC5DD44271AD3CDBA, -635, -172 },
13045  { 0x936B9FCEBB25C996, -608, -164 },
13046  { 0xDBAC6C247D62A584, -582, -156 },
13047  { 0xA3AB66580D5FDAF6, -555, -148 },
13048  { 0xF3E2F893DEC3F126, -529, -140 },
13049  { 0xB5B5ADA8AAFF80B8, -502, -132 },
13050  { 0x87625F056C7C4A8B, -475, -124 },
13051  { 0xC9BCFF6034C13053, -449, -116 },
13052  { 0x964E858C91BA2655, -422, -108 },
13053  { 0xDFF9772470297EBD, -396, -100 },
13054  { 0xA6DFBD9FB8E5B88F, -369, -92 },
13055  { 0xF8A95FCF88747D94, -343, -84 },
13056  { 0xB94470938FA89BCF, -316, -76 },
13057  { 0x8A08F0F8BF0F156B, -289, -68 },
13058  { 0xCDB02555653131B6, -263, -60 },
13059  { 0x993FE2C6D07B7FAC, -236, -52 },
13060  { 0xE45C10C42A2B3B06, -210, -44 },
13061  { 0xAA242499697392D3, -183, -36 },
13062  { 0xFD87B5F28300CA0E, -157, -28 },
13063  { 0xBCE5086492111AEB, -130, -20 },
13064  { 0x8CBCCC096F5088CC, -103, -12 },
13065  { 0xD1B71758E219652C, -77, -4 },
13066  { 0x9C40000000000000, -50, 4 },
13067  { 0xE8D4A51000000000, -24, 12 },
13068  { 0xAD78EBC5AC620000, 3, 20 },
13069  { 0x813F3978F8940984, 30, 28 },
13070  { 0xC097CE7BC90715B3, 56, 36 },
13071  { 0x8F7E32CE7BEA5C70, 83, 44 },
13072  { 0xD5D238A4ABE98068, 109, 52 },
13073  { 0x9F4F2726179A2245, 136, 60 },
13074  { 0xED63A231D4C4FB27, 162, 68 },
13075  { 0xB0DE65388CC8ADA8, 189, 76 },
13076  { 0x83C7088E1AAB65DB, 216, 84 },
13077  { 0xC45D1DF942711D9A, 242, 92 },
13078  { 0x924D692CA61BE758, 269, 100 },
13079  { 0xDA01EE641A708DEA, 295, 108 },
13080  { 0xA26DA3999AEF774A, 322, 116 },
13081  { 0xF209787BB47D6B85, 348, 124 },
13082  { 0xB454E4A179DD1877, 375, 132 },
13083  { 0x865B86925B9BC5C2, 402, 140 },
13084  { 0xC83553C5C8965D3D, 428, 148 },
13085  { 0x952AB45CFA97A0B3, 455, 156 },
13086  { 0xDE469FBD99A05FE3, 481, 164 },
13087  { 0xA59BC234DB398C25, 508, 172 },
13088  { 0xF6C69A72A3989F5C, 534, 180 },
13089  { 0xB7DCBF5354E9BECE, 561, 188 },
13090  { 0x88FCF317F22241E2, 588, 196 },
13091  { 0xCC20CE9BD35C78A5, 614, 204 },
13092  { 0x98165AF37B2153DF, 641, 212 },
13093  { 0xE2A0B5DC971F303A, 667, 220 },
13094  { 0xA8D9D1535CE3B396, 694, 228 },
13095  { 0xFB9B7CD9A4A7443C, 720, 236 },
13096  { 0xBB764C4CA7A44410, 747, 244 },
13097  { 0x8BAB8EEFB6409C1A, 774, 252 },
13098  { 0xD01FEF10A657842C, 800, 260 },
13099  { 0x9B10A4E5E9913129, 827, 268 },
13100  { 0xE7109BFBA19C0C9D, 853, 276 },
13101  { 0xAC2820D9623BF429, 880, 284 },
13102  { 0x80444B5E7AA7CF85, 907, 292 },
13103  { 0xBF21E44003ACDD2D, 933, 300 },
13104  { 0x8E679C2F5E44FF8F, 960, 308 },
13105  { 0xD433179D9C8CB841, 986, 316 },
13106  { 0x9E19DB92B4E31BA9, 1013, 324 },
13107  }
13108  };
13109 
13110  // This computation gives exactly the same results for k as
13111  // k = ceil((kAlpha - e - 1) * 0.30102999566398114)
13112  // for |e| <= 1500, but doesn't require floating-point operations.
13113  // NB: log_10(2) ~= 78913 / 2^18
13114  assert(e >= -1500);
13115  assert(e <= 1500);
13116  const int f = kAlpha - e - 1;
13117  const int k = (f * 78913) / (1 << 18) + static_cast<int>(f > 0);
13118 
13119  const int index = (-kCachedPowersMinDecExp + k + (kCachedPowersDecStep - 1)) / kCachedPowersDecStep;
13120  assert(index >= 0);
13121  assert(static_cast<std::size_t>(index) < kCachedPowers.size());
13122 
13123  const cached_power cached = kCachedPowers[static_cast<std::size_t>(index)];
13124  assert(kAlpha <= cached.e + e + 64);
13125  assert(kGamma >= cached.e + e + 64);
13126 
13127  return cached;
13128 }
13129 
13130 /*!
13131 For n != 0, returns k, such that pow10 := 10^(k-1) <= n < 10^k.
13132 For n == 0, returns 1 and sets pow10 := 1.
13133 */
13134 inline int find_largest_pow10(const std::uint32_t n, std::uint32_t& pow10)
13135 {
13136  // LCOV_EXCL_START
13137  if (n >= 1000000000)
13138  {
13139  pow10 = 1000000000;
13140  return 10;
13141  }
13142  // LCOV_EXCL_STOP
13143  else if (n >= 100000000)
13144  {
13145  pow10 = 100000000;
13146  return 9;
13147  }
13148  else if (n >= 10000000)
13149  {
13150  pow10 = 10000000;
13151  return 8;
13152  }
13153  else if (n >= 1000000)
13154  {
13155  pow10 = 1000000;
13156  return 7;
13157  }
13158  else if (n >= 100000)
13159  {
13160  pow10 = 100000;
13161  return 6;
13162  }
13163  else if (n >= 10000)
13164  {
13165  pow10 = 10000;
13166  return 5;
13167  }
13168  else if (n >= 1000)
13169  {
13170  pow10 = 1000;
13171  return 4;
13172  }
13173  else if (n >= 100)
13174  {
13175  pow10 = 100;
13176  return 3;
13177  }
13178  else if (n >= 10)
13179  {
13180  pow10 = 10;
13181  return 2;
13182  }
13183  else
13184  {
13185  pow10 = 1;
13186  return 1;
13187  }
13188 }
13189 
13190 inline void grisu2_round(char* buf, int len, std::uint64_t dist, std::uint64_t delta,
13191  std::uint64_t rest, std::uint64_t ten_k)
13192 {
13193  assert(len >= 1);
13194  assert(dist <= delta);
13195  assert(rest <= delta);
13196  assert(ten_k > 0);
13197 
13198  // <--------------------------- delta ---->
13199  // <---- dist --------->
13200  // --------------[------------------+-------------------]--------------
13201  // M- w M+
13202  //
13203  // ten_k
13204  // <------>
13205  // <---- rest ---->
13206  // --------------[------------------+----+--------------]--------------
13207  // w V
13208  // = buf * 10^k
13209  //
13210  // ten_k represents a unit-in-the-last-place in the decimal representation
13211  // stored in buf.
13212  // Decrement buf by ten_k while this takes buf closer to w.
13213 
13214  // The tests are written in this order to avoid overflow in unsigned
13215  // integer arithmetic.
13216 
13217  while (rest < dist
13218  and delta - rest >= ten_k
13219  and (rest + ten_k < dist or dist - rest > rest + ten_k - dist))
13220  {
13221  assert(buf[len - 1] != '0');
13222  buf[len - 1]--;
13223  rest += ten_k;
13224  }
13225 }
13226 
13227 /*!
13228 Generates V = buffer * 10^decimal_exponent, such that M- <= V <= M+.
13229 M- and M+ must be normalized and share the same exponent -60 <= e <= -32.
13230 */
13231 inline void grisu2_digit_gen(char* buffer, int& length, int& decimal_exponent,
13232  diyfp M_minus, diyfp w, diyfp M_plus)
13233 {
13234  static_assert(kAlpha >= -60, "internal error");
13235  static_assert(kGamma <= -32, "internal error");
13236 
13237  // Generates the digits (and the exponent) of a decimal floating-point
13238  // number V = buffer * 10^decimal_exponent in the range [M-, M+]. The diyfp's
13239  // w, M- and M+ share the same exponent e, which satisfies alpha <= e <= gamma.
13240  //
13241  // <--------------------------- delta ---->
13242  // <---- dist --------->
13243  // --------------[------------------+-------------------]--------------
13244  // M- w M+
13245  //
13246  // Grisu2 generates the digits of M+ from left to right and stops as soon as
13247  // V is in [M-,M+].
13248 
13249  assert(M_plus.e >= kAlpha);
13250  assert(M_plus.e <= kGamma);
13251 
13252  std::uint64_t delta = diyfp::sub(M_plus, M_minus).f; // (significand of (M+ - M-), implicit exponent is e)
13253  std::uint64_t dist = diyfp::sub(M_plus, w ).f; // (significand of (M+ - w ), implicit exponent is e)
13254 
13255  // Split M+ = f * 2^e into two parts p1 and p2 (note: e < 0):
13256  //
13257  // M+ = f * 2^e
13258  // = ((f div 2^-e) * 2^-e + (f mod 2^-e)) * 2^e
13259  // = ((p1 ) * 2^-e + (p2 )) * 2^e
13260  // = p1 + p2 * 2^e
13261 
13262  const diyfp one(std::uint64_t{1} << -M_plus.e, M_plus.e);
13263 
13264  auto p1 = static_cast<std::uint32_t>(M_plus.f >> -one.e); // p1 = f div 2^-e (Since -e >= 32, p1 fits into a 32-bit int.)
13265  std::uint64_t p2 = M_plus.f & (one.f - 1); // p2 = f mod 2^-e
13266 
13267  // 1)
13268  //
13269  // Generate the digits of the integral part p1 = d[n-1]...d[1]d[0]
13270 
13271  assert(p1 > 0);
13272 
13273  std::uint32_t pow10;
13274  const int k = find_largest_pow10(p1, pow10);
13275 
13276  // 10^(k-1) <= p1 < 10^k, pow10 = 10^(k-1)
13277  //
13278  // p1 = (p1 div 10^(k-1)) * 10^(k-1) + (p1 mod 10^(k-1))
13279  // = (d[k-1] ) * 10^(k-1) + (p1 mod 10^(k-1))
13280  //
13281  // M+ = p1 + p2 * 2^e
13282  // = d[k-1] * 10^(k-1) + (p1 mod 10^(k-1)) + p2 * 2^e
13283  // = d[k-1] * 10^(k-1) + ((p1 mod 10^(k-1)) * 2^-e + p2) * 2^e
13284  // = d[k-1] * 10^(k-1) + ( rest) * 2^e
13285  //
13286  // Now generate the digits d[n] of p1 from left to right (n = k-1,...,0)
13287  //
13288  // p1 = d[k-1]...d[n] * 10^n + d[n-1]...d[0]
13289  //
13290  // but stop as soon as
13291  //
13292  // rest * 2^e = (d[n-1]...d[0] * 2^-e + p2) * 2^e <= delta * 2^e
13293 
13294  int n = k;
13295  while (n > 0)
13296  {
13297  // Invariants:
13298  // M+ = buffer * 10^n + (p1 + p2 * 2^e) (buffer = 0 for n = k)
13299  // pow10 = 10^(n-1) <= p1 < 10^n
13300  //
13301  const std::uint32_t d = p1 / pow10; // d = p1 div 10^(n-1)
13302  const std::uint32_t r = p1 % pow10; // r = p1 mod 10^(n-1)
13303  //
13304  // M+ = buffer * 10^n + (d * 10^(n-1) + r) + p2 * 2^e
13305  // = (buffer * 10 + d) * 10^(n-1) + (r + p2 * 2^e)
13306  //
13307  assert(d <= 9);
13308  buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d
13309  //
13310  // M+ = buffer * 10^(n-1) + (r + p2 * 2^e)
13311  //
13312  p1 = r;
13313  n--;
13314  //
13315  // M+ = buffer * 10^n + (p1 + p2 * 2^e)
13316  // pow10 = 10^n
13317  //
13318 
13319  // Now check if enough digits have been generated.
13320  // Compute
13321  //
13322  // p1 + p2 * 2^e = (p1 * 2^-e + p2) * 2^e = rest * 2^e
13323  //
13324  // Note:
13325  // Since rest and delta share the same exponent e, it suffices to
13326  // compare the significands.
13327  const std::uint64_t rest = (std::uint64_t{p1} << -one.e) + p2;
13328  if (rest <= delta)
13329  {
13330  // V = buffer * 10^n, with M- <= V <= M+.
13331 
13332  decimal_exponent += n;
13333 
13334  // We may now just stop. But instead look if the buffer could be
13335  // decremented to bring V closer to w.
13336  //
13337  // pow10 = 10^n is now 1 ulp in the decimal representation V.
13338  // The rounding procedure works with diyfp's with an implicit
13339  // exponent of e.
13340  //
13341  // 10^n = (10^n * 2^-e) * 2^e = ulp * 2^e
13342  //
13343  const std::uint64_t ten_n = std::uint64_t{pow10} << -one.e;
13344  grisu2_round(buffer, length, dist, delta, rest, ten_n);
13345 
13346  return;
13347  }
13348 
13349  pow10 /= 10;
13350  //
13351  // pow10 = 10^(n-1) <= p1 < 10^n
13352  // Invariants restored.
13353  }
13354 
13355  // 2)
13356  //
13357  // The digits of the integral part have been generated:
13358  //
13359  // M+ = d[k-1]...d[1]d[0] + p2 * 2^e
13360  // = buffer + p2 * 2^e
13361  //
13362  // Now generate the digits of the fractional part p2 * 2^e.
13363  //
13364  // Note:
13365  // No decimal point is generated: the exponent is adjusted instead.
13366  //
13367  // p2 actually represents the fraction
13368  //
13369  // p2 * 2^e
13370  // = p2 / 2^-e
13371  // = d[-1] / 10^1 + d[-2] / 10^2 + ...
13372  //
13373  // Now generate the digits d[-m] of p1 from left to right (m = 1,2,...)
13374  //
13375  // p2 * 2^e = d[-1]d[-2]...d[-m] * 10^-m
13376  // + 10^-m * (d[-m-1] / 10^1 + d[-m-2] / 10^2 + ...)
13377  //
13378  // using
13379  //
13380  // 10^m * p2 = ((10^m * p2) div 2^-e) * 2^-e + ((10^m * p2) mod 2^-e)
13381  // = ( d) * 2^-e + ( r)
13382  //
13383  // or
13384  // 10^m * p2 * 2^e = d + r * 2^e
13385  //
13386  // i.e.
13387  //
13388  // M+ = buffer + p2 * 2^e
13389  // = buffer + 10^-m * (d + r * 2^e)
13390  // = (buffer * 10^m + d) * 10^-m + 10^-m * r * 2^e
13391  //
13392  // and stop as soon as 10^-m * r * 2^e <= delta * 2^e
13393 
13394  assert(p2 > delta);
13395 
13396  int m = 0;
13397  for (;;)
13398  {
13399  // Invariant:
13400  // M+ = buffer * 10^-m + 10^-m * (d[-m-1] / 10 + d[-m-2] / 10^2 + ...) * 2^e
13401  // = buffer * 10^-m + 10^-m * (p2 ) * 2^e
13402  // = buffer * 10^-m + 10^-m * (1/10 * (10 * p2) ) * 2^e
13403  // = buffer * 10^-m + 10^-m * (1/10 * ((10*p2 div 2^-e) * 2^-e + (10*p2 mod 2^-e)) * 2^e
13404  //
13405  assert(p2 <= (std::numeric_limits<std::uint64_t>::max)() / 10);
13406  p2 *= 10;
13407  const std::uint64_t d = p2 >> -one.e; // d = (10 * p2) div 2^-e
13408  const std::uint64_t r = p2 & (one.f - 1); // r = (10 * p2) mod 2^-e
13409  //
13410  // M+ = buffer * 10^-m + 10^-m * (1/10 * (d * 2^-e + r) * 2^e
13411  // = buffer * 10^-m + 10^-m * (1/10 * (d + r * 2^e))
13412  // = (buffer * 10 + d) * 10^(-m-1) + 10^(-m-1) * r * 2^e
13413  //
13414  assert(d <= 9);
13415  buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d
13416  //
13417  // M+ = buffer * 10^(-m-1) + 10^(-m-1) * r * 2^e
13418  //
13419  p2 = r;
13420  m++;
13421  //
13422  // M+ = buffer * 10^-m + 10^-m * p2 * 2^e
13423  // Invariant restored.
13424 
13425  // Check if enough digits have been generated.
13426  //
13427  // 10^-m * p2 * 2^e <= delta * 2^e
13428  // p2 * 2^e <= 10^m * delta * 2^e
13429  // p2 <= 10^m * delta
13430  delta *= 10;
13431  dist *= 10;
13432  if (p2 <= delta)
13433  {
13434  break;
13435  }
13436  }
13437 
13438  // V = buffer * 10^-m, with M- <= V <= M+.
13439 
13440  decimal_exponent -= m;
13441 
13442  // 1 ulp in the decimal representation is now 10^-m.
13443  // Since delta and dist are now scaled by 10^m, we need to do the
13444  // same with ulp in order to keep the units in sync.
13445  //
13446  // 10^m * 10^-m = 1 = 2^-e * 2^e = ten_m * 2^e
13447  //
13448  const std::uint64_t ten_m = one.f;
13449  grisu2_round(buffer, length, dist, delta, p2, ten_m);
13450 
13451  // By construction this algorithm generates the shortest possible decimal
13452  // number (Loitsch, Theorem 6.2) which rounds back to w.
13453  // For an input number of precision p, at least
13454  //
13455  // N = 1 + ceil(p * log_10(2))
13456  //
13457  // decimal digits are sufficient to identify all binary floating-point
13458  // numbers (Matula, "In-and-Out conversions").
13459  // This implies that the algorithm does not produce more than N decimal
13460  // digits.
13461  //
13462  // N = 17 for p = 53 (IEEE double precision)
13463  // N = 9 for p = 24 (IEEE single precision)
13464 }
13465 
13466 /*!
13467 v = buf * 10^decimal_exponent
13468 len is the length of the buffer (number of decimal digits)
13469 The buffer must be large enough, i.e. >= max_digits10.
13470 */
13472 inline void grisu2(char* buf, int& len, int& decimal_exponent,
13473  diyfp m_minus, diyfp v, diyfp m_plus)
13474 {
13475  assert(m_plus.e == m_minus.e);
13476  assert(m_plus.e == v.e);
13477 
13478  // --------(-----------------------+-----------------------)-------- (A)
13479  // m- v m+
13480  //
13481  // --------------------(-----------+-----------------------)-------- (B)
13482  // m- v m+
13483  //
13484  // First scale v (and m- and m+) such that the exponent is in the range
13485  // [alpha, gamma].
13486 
13487  const cached_power cached = get_cached_power_for_binary_exponent(m_plus.e);
13488 
13489  const diyfp c_minus_k(cached.f, cached.e); // = c ~= 10^-k
13490 
13491  // The exponent of the products is = v.e + c_minus_k.e + q and is in the range [alpha,gamma]
13492  const diyfp w = diyfp::mul(v, c_minus_k);
13493  const diyfp w_minus = diyfp::mul(m_minus, c_minus_k);
13494  const diyfp w_plus = diyfp::mul(m_plus, c_minus_k);
13495 
13496  // ----(---+---)---------------(---+---)---------------(---+---)----
13497  // w- w w+
13498  // = c*m- = c*v = c*m+
13499  //
13500  // diyfp::mul rounds its result and c_minus_k is approximated too. w, w- and
13501  // w+ are now off by a small amount.
13502  // In fact:
13503  //
13504  // w - v * 10^k < 1 ulp
13505  //
13506  // To account for this inaccuracy, add resp. subtract 1 ulp.
13507  //
13508  // --------+---[---------------(---+---)---------------]---+--------
13509  // w- M- w M+ w+
13510  //
13511  // Now any number in [M-, M+] (bounds included) will round to w when input,
13512  // regardless of how the input rounding algorithm breaks ties.
13513  //
13514  // And digit_gen generates the shortest possible such number in [M-, M+].
13515  // Note that this does not mean that Grisu2 always generates the shortest
13516  // possible number in the interval (m-, m+).
13517  const diyfp M_minus(w_minus.f + 1, w_minus.e);
13518  const diyfp M_plus (w_plus.f - 1, w_plus.e );
13519 
13520  decimal_exponent = -cached.k; // = -(-k) = k
13521 
13522  grisu2_digit_gen(buf, len, decimal_exponent, M_minus, w, M_plus);
13523 }
13524 
13525 /*!
13526 v = buf * 10^decimal_exponent
13527 len is the length of the buffer (number of decimal digits)
13528 The buffer must be large enough, i.e. >= max_digits10.
13529 */
13530 template <typename FloatType>
13532 void grisu2(char* buf, int& len, int& decimal_exponent, FloatType value)
13533 {
13534  static_assert(diyfp::kPrecision >= std::numeric_limits<FloatType>::digits + 3,
13535  "internal error: not enough precision");
13536 
13537  assert(std::isfinite(value));
13538  assert(value > 0);
13539 
13540  // If the neighbors (and boundaries) of 'value' are always computed for double-precision
13541  // numbers, all float's can be recovered using strtod (and strtof). However, the resulting
13542  // decimal representations are not exactly "short".
13543  //
13544  // The documentation for 'std::to_chars' (https://en.cppreference.com/w/cpp/utility/to_chars)
13545  // says "value is converted to a string as if by std::sprintf in the default ("C") locale"
13546  // and since sprintf promotes float's to double's, I think this is exactly what 'std::to_chars'
13547  // does.
13548  // On the other hand, the documentation for 'std::to_chars' requires that "parsing the
13549  // representation using the corresponding std::from_chars function recovers value exactly". That
13550  // indicates that single precision floating-point numbers should be recovered using
13551  // 'std::strtof'.
13552  //
13553  // NB: If the neighbors are computed for single-precision numbers, there is a single float
13554  // (7.0385307e-26f) which can't be recovered using strtod. The resulting double precision
13555  // value is off by 1 ulp.
13556 #if 0
13557  const boundaries w = compute_boundaries(static_cast<double>(value));
13558 #else
13559  const boundaries w = compute_boundaries(value);
13560 #endif
13561 
13562  grisu2(buf, len, decimal_exponent, w.minus, w.w, w.plus);
13563 }
13564 
13565 /*!
13566 @brief appends a decimal representation of e to buf
13567 @return a pointer to the element following the exponent.
13568 @pre -1000 < e < 1000
13569 */
13572 inline char* append_exponent(char* buf, int e)
13573 {
13574  assert(e > -1000);
13575  assert(e < 1000);
13576 
13577  if (e < 0)
13578  {
13579  e = -e;
13580  *buf++ = '-';
13581  }
13582  else
13583  {
13584  *buf++ = '+';
13585  }
13586 
13587  auto k = static_cast<std::uint32_t>(e);
13588  if (k < 10)
13589  {
13590  // Always print at least two digits in the exponent.
13591  // This is for compatibility with printf("%g").
13592  *buf++ = '0';
13593  *buf++ = static_cast<char>('0' + k);
13594  }
13595  else if (k < 100)
13596  {
13597  *buf++ = static_cast<char>('0' + k / 10);
13598  k %= 10;
13599  *buf++ = static_cast<char>('0' + k);
13600  }
13601  else
13602  {
13603  *buf++ = static_cast<char>('0' + k / 100);
13604  k %= 100;
13605  *buf++ = static_cast<char>('0' + k / 10);
13606  k %= 10;
13607  *buf++ = static_cast<char>('0' + k);
13608  }
13609 
13610  return buf;
13611 }
13612 
13613 /*!
13614 @brief prettify v = buf * 10^decimal_exponent
13615 
13616 If v is in the range [10^min_exp, 10^max_exp) it will be printed in fixed-point
13617 notation. Otherwise it will be printed in exponential notation.
13618 
13619 @pre min_exp < 0
13620 @pre max_exp > 0
13621 */
13624 inline char* format_buffer(char* buf, int len, int decimal_exponent,
13625  int min_exp, int max_exp)
13626 {
13627  assert(min_exp < 0);
13628  assert(max_exp > 0);
13629 
13630  const int k = len;
13631  const int n = len + decimal_exponent;
13632 
13633  // v = buf * 10^(n-k)
13634  // k is the length of the buffer (number of decimal digits)
13635  // n is the position of the decimal point relative to the start of the buffer.
13636 
13637  if (k <= n and n <= max_exp)
13638  {
13639  // digits[000]
13640  // len <= max_exp + 2
13641 
13642  std::memset(buf + k, '0', static_cast<size_t>(n - k));
13643  // Make it look like a floating-point number (#362, #378)
13644  buf[n + 0] = '.';
13645  buf[n + 1] = '0';
13646  return buf + (n + 2);
13647  }
13648 
13649  if (0 < n and n <= max_exp)
13650  {
13651  // dig.its
13652  // len <= max_digits10 + 1
13653 
13654  assert(k > n);
13655 
13656  std::memmove(buf + (n + 1), buf + n, static_cast<size_t>(k - n));
13657  buf[n] = '.';
13658  return buf + (k + 1);
13659  }
13660 
13661  if (min_exp < n and n <= 0)
13662  {
13663  // 0.[000]digits
13664  // len <= 2 + (-min_exp - 1) + max_digits10
13665 
13666  std::memmove(buf + (2 + -n), buf, static_cast<size_t>(k));
13667  buf[0] = '0';
13668  buf[1] = '.';
13669  std::memset(buf + 2, '0', static_cast<size_t>(-n));
13670  return buf + (2 + (-n) + k);
13671  }
13672 
13673  if (k == 1)
13674  {
13675  // dE+123
13676  // len <= 1 + 5
13677 
13678  buf += 1;
13679  }
13680  else
13681  {
13682  // d.igitsE+123
13683  // len <= max_digits10 + 1 + 5
13684 
13685  std::memmove(buf + 2, buf + 1, static_cast<size_t>(k - 1));
13686  buf[1] = '.';
13687  buf += 1 + k;
13688  }
13689 
13690  *buf++ = 'e';
13691  return append_exponent(buf, n - 1);
13692 }
13693 
13694 } // namespace dtoa_impl
13695 
13696 /*!
13697 @brief generates a decimal representation of the floating-point number value in [first, last).
13698 
13699 The format of the resulting decimal representation is similar to printf's %g
13700 format. Returns an iterator pointing past-the-end of the decimal representation.
13701 
13702 @note The input number must be finite, i.e. NaN's and Inf's are not supported.
13703 @note The buffer must be large enough.
13704 @note The result is NOT null-terminated.
13705 */
13706 template <typename FloatType>
13709 char* to_chars(char* first, const char* last, FloatType value)
13710 {
13711  static_cast<void>(last); // maybe unused - fix warning
13712  assert(std::isfinite(value));
13713 
13714  // Use signbit(value) instead of (value < 0) since signbit works for -0.
13715  if (std::signbit(value))
13716  {
13717  value = -value;
13718  *first++ = '-';
13719  }
13720 
13721  if (value == 0) // +-0
13722  {
13723  *first++ = '0';
13724  // Make it look like a floating-point number (#362, #378)
13725  *first++ = '.';
13726  *first++ = '0';
13727  return first;
13728  }
13729 
13730  assert(last - first >= std::numeric_limits<FloatType>::max_digits10);
13731 
13732  // Compute v = buffer * 10^decimal_exponent.
13733  // The decimal digits are stored in the buffer, which needs to be interpreted
13734  // as an unsigned decimal integer.
13735  // len is the length of the buffer, i.e. the number of decimal digits.
13736  int len = 0;
13737  int decimal_exponent = 0;
13738  dtoa_impl::grisu2(first, len, decimal_exponent, value);
13739 
13740  assert(len <= std::numeric_limits<FloatType>::max_digits10);
13741 
13742  // Format the buffer like printf("%.*g", prec, value)
13743  constexpr int kMinExp = -4;
13744  // Use digits10 here to increase compatibility with version 2.
13745  constexpr int kMaxExp = std::numeric_limits<FloatType>::digits10;
13746 
13747  assert(last - first >= kMaxExp + 2);
13748  assert(last - first >= 2 + (-kMinExp - 1) + std::numeric_limits<FloatType>::max_digits10);
13749  assert(last - first >= std::numeric_limits<FloatType>::max_digits10 + 6);
13750 
13751  return dtoa_impl::format_buffer(first, len, decimal_exponent, kMinExp, kMaxExp);
13752 }
13753 
13754 } // namespace detail
13755 } // namespace nlohmann
13756 
13757 // #include <nlohmann/detail/exceptions.hpp>
13758 
13759 // #include <nlohmann/detail/macro_scope.hpp>
13760 
13761 // #include <nlohmann/detail/meta/cpp_future.hpp>
13762 
13763 // #include <nlohmann/detail/output/binary_writer.hpp>
13764 
13765 // #include <nlohmann/detail/output/output_adapters.hpp>
13766 
13767 // #include <nlohmann/detail/value_t.hpp>
13768 
13769 
13770 namespace nlohmann
13771 {
13772 namespace detail
13773 {
13774 ///////////////////
13775 // serialization //
13776 ///////////////////
13777 
13778 /// how to treat decoding errors
13780 {
13781  strict, ///< throw a type_error exception in case of invalid UTF-8
13782  replace, ///< replace invalid UTF-8 sequences with U+FFFD
13783  ignore ///< ignore invalid UTF-8 sequences
13784 };
13785 
13786 template<typename BasicJsonType>
13788 {
13789  using string_t = typename BasicJsonType::string_t;
13790  using number_float_t = typename BasicJsonType::number_float_t;
13791  using number_integer_t = typename BasicJsonType::number_integer_t;
13792  using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
13793  static constexpr std::uint8_t UTF8_ACCEPT = 0;
13794  static constexpr std::uint8_t UTF8_REJECT = 1;
13795 
13796  public:
13797  /*!
13798  @param[in] s output stream to serialize to
13799  @param[in] ichar indentation character to use
13800  @param[in] error_handler_ how to react on decoding errors
13801  */
13803  error_handler_t error_handler_ = error_handler_t::strict)
13804  : o(std::move(s))
13805  , loc(std::localeconv())
13806  , thousands_sep(loc->thousands_sep == nullptr ? '\0' : * (loc->thousands_sep))
13807  , decimal_point(loc->decimal_point == nullptr ? '\0' : * (loc->decimal_point))
13808  , indent_char(ichar)
13809  , indent_string(512, indent_char)
13810  , error_handler(error_handler_)
13811  {}
13812 
13813  // delete because of pointer members
13814  serializer(const serializer&) = delete;
13815  serializer& operator=(const serializer&) = delete;
13816  serializer(serializer&&) = delete;
13817  serializer& operator=(serializer&&) = delete;
13818  ~serializer() = default;
13819 
13820  /*!
13821  @brief internal implementation of the serialization function
13822 
13823  This function is called by the public member function dump and organizes
13824  the serialization internally. The indentation level is propagated as
13825  additional parameter. In case of arrays and objects, the function is
13826  called recursively.
13827 
13828  - strings and object keys are escaped using `escape_string()`
13829  - integer numbers are converted implicitly via `operator<<`
13830  - floating-point numbers are converted to a string using `"%g"` format
13831 
13832  @param[in] val value to serialize
13833  @param[in] pretty_print whether the output shall be pretty-printed
13834  @param[in] indent_step the indent level
13835  @param[in] current_indent the current indent level (only used internally)
13836  */
13837  void dump(const BasicJsonType& val, const bool pretty_print,
13838  const bool ensure_ascii,
13839  const unsigned int indent_step,
13840  const unsigned int current_indent = 0)
13841  {
13842  switch (val.m_type)
13843  {
13844  case value_t::object:
13845  {
13846  if (val.m_value.object->empty())
13847  {
13848  o->write_characters("{}", 2);
13849  return;
13850  }
13851 
13852  if (pretty_print)
13853  {
13854  o->write_characters("{\n", 2);
13855 
13856  // variable to hold indentation for recursive calls
13857  const auto new_indent = current_indent + indent_step;
13858  if (JSON_HEDLEY_UNLIKELY(indent_string.size() < new_indent))
13859  {
13860  indent_string.resize(indent_string.size() * 2, ' ');
13861  }
13862 
13863  // first n-1 elements
13864  auto i = val.m_value.object->cbegin();
13865  for (std::size_t cnt = 0; cnt < val.m_value.object->size() - 1; ++cnt, ++i)
13866  {
13867  o->write_characters(indent_string.c_str(), new_indent);
13868  o->write_character('\"');
13869  dump_escaped(i->first, ensure_ascii);
13870  o->write_characters("\": ", 3);
13871  dump(i->second, true, ensure_ascii, indent_step, new_indent);
13872  o->write_characters(",\n", 2);
13873  }
13874 
13875  // last element
13876  assert(i != val.m_value.object->cend());
13877  assert(std::next(i) == val.m_value.object->cend());
13878  o->write_characters(indent_string.c_str(), new_indent);
13879  o->write_character('\"');
13880  dump_escaped(i->first, ensure_ascii);
13881  o->write_characters("\": ", 3);
13882  dump(i->second, true, ensure_ascii, indent_step, new_indent);
13883 
13884  o->write_character('\n');
13885  o->write_characters(indent_string.c_str(), current_indent);
13886  o->write_character('}');
13887  }
13888  else
13889  {
13890  o->write_character('{');
13891 
13892  // first n-1 elements
13893  auto i = val.m_value.object->cbegin();
13894  for (std::size_t cnt = 0; cnt < val.m_value.object->size() - 1; ++cnt, ++i)
13895  {
13896  o->write_character('\"');
13897  dump_escaped(i->first, ensure_ascii);
13898  o->write_characters("\":", 2);
13899  dump(i->second, false, ensure_ascii, indent_step, current_indent);
13900  o->write_character(',');
13901  }
13902 
13903  // last element
13904  assert(i != val.m_value.object->cend());
13905  assert(std::next(i) == val.m_value.object->cend());
13906  o->write_character('\"');
13907  dump_escaped(i->first, ensure_ascii);
13908  o->write_characters("\":", 2);
13909  dump(i->second, false, ensure_ascii, indent_step, current_indent);
13910 
13911  o->write_character('}');
13912  }
13913 
13914  return;
13915  }
13916 
13917  case value_t::array:
13918  {
13919  if (val.m_value.array->empty())
13920  {
13921  o->write_characters("[]", 2);
13922  return;
13923  }
13924 
13925  if (pretty_print)
13926  {
13927  o->write_characters("[\n", 2);
13928 
13929  // variable to hold indentation for recursive calls
13930  const auto new_indent = current_indent + indent_step;
13931  if (JSON_HEDLEY_UNLIKELY(indent_string.size() < new_indent))
13932  {
13933  indent_string.resize(indent_string.size() * 2, ' ');
13934  }
13935 
13936  // first n-1 elements
13937  for (auto i = val.m_value.array->cbegin();
13938  i != val.m_value.array->cend() - 1; ++i)
13939  {
13940  o->write_characters(indent_string.c_str(), new_indent);
13941  dump(*i, true, ensure_ascii, indent_step, new_indent);
13942  o->write_characters(",\n", 2);
13943  }
13944 
13945  // last element
13946  assert(not val.m_value.array->empty());
13947  o->write_characters(indent_string.c_str(), new_indent);
13948  dump(val.m_value.array->back(), true, ensure_ascii, indent_step, new_indent);
13949 
13950  o->write_character('\n');
13951  o->write_characters(indent_string.c_str(), current_indent);
13952  o->write_character(']');
13953  }
13954  else
13955  {
13956  o->write_character('[');
13957 
13958  // first n-1 elements
13959  for (auto i = val.m_value.array->cbegin();
13960  i != val.m_value.array->cend() - 1; ++i)
13961  {
13962  dump(*i, false, ensure_ascii, indent_step, current_indent);
13963  o->write_character(',');
13964  }
13965 
13966  // last element
13967  assert(not val.m_value.array->empty());
13968  dump(val.m_value.array->back(), false, ensure_ascii, indent_step, current_indent);
13969 
13970  o->write_character(']');
13971  }
13972 
13973  return;
13974  }
13975 
13976  case value_t::string:
13977  {
13978  o->write_character('\"');
13979  dump_escaped(*val.m_value.string, ensure_ascii);
13980  o->write_character('\"');
13981  return;
13982  }
13983 
13984  case value_t::boolean:
13985  {
13986  if (val.m_value.boolean)
13987  {
13988  o->write_characters("true", 4);
13989  }
13990  else
13991  {
13992  o->write_characters("false", 5);
13993  }
13994  return;
13995  }
13996 
13997  case value_t::number_integer:
13998  {
13999  dump_integer(val.m_value.number_integer);
14000  return;
14001  }
14002 
14003  case value_t::number_unsigned:
14004  {
14005  dump_integer(val.m_value.number_unsigned);
14006  return;
14007  }
14008 
14009  case value_t::number_float:
14010  {
14011  dump_float(val.m_value.number_float);
14012  return;
14013  }
14014 
14015  case value_t::discarded:
14016  {
14017  o->write_characters("<discarded>", 11);
14018  return;
14019  }
14020 
14021  case value_t::null:
14022  {
14023  o->write_characters("null", 4);
14024  return;
14025  }
14026 
14027  default: // LCOV_EXCL_LINE
14028  assert(false); // LCOV_EXCL_LINE
14029  }
14030  }
14031 
14032  private:
14033  /*!
14034  @brief dump escaped string
14035 
14036  Escape a string by replacing certain special characters by a sequence of an
14037  escape character (backslash) and another character and other control
14038  characters by a sequence of "\u" followed by a four-digit hex
14039  representation. The escaped string is written to output stream @a o.
14040 
14041  @param[in] s the string to escape
14042  @param[in] ensure_ascii whether to escape non-ASCII characters with
14043  \uXXXX sequences
14044 
14045  @complexity Linear in the length of string @a s.
14046  */
14047  void dump_escaped(const string_t& s, const bool ensure_ascii)
14048  {
14049  std::uint32_t codepoint;
14050  std::uint8_t state = UTF8_ACCEPT;
14051  std::size_t bytes = 0; // number of bytes written to string_buffer
14052 
14053  // number of bytes written at the point of the last valid byte
14054  std::size_t bytes_after_last_accept = 0;
14055  std::size_t undumped_chars = 0;
14056 
14057  for (std::size_t i = 0; i < s.size(); ++i)
14058  {
14059  const auto byte = static_cast<uint8_t>(s[i]);
14060 
14061  switch (decode(state, codepoint, byte))
14062  {
14063  case UTF8_ACCEPT: // decode found a new code point
14064  {
14065  switch (codepoint)
14066  {
14067  case 0x08: // backspace
14068  {
14069  string_buffer[bytes++] = '\\';
14070  string_buffer[bytes++] = 'b';
14071  break;
14072  }
14073 
14074  case 0x09: // horizontal tab
14075  {
14076  string_buffer[bytes++] = '\\';
14077  string_buffer[bytes++] = 't';
14078  break;
14079  }
14080 
14081  case 0x0A: // newline
14082  {
14083  string_buffer[bytes++] = '\\';
14084  string_buffer[bytes++] = 'n';
14085  break;
14086  }
14087 
14088  case 0x0C: // formfeed
14089  {
14090  string_buffer[bytes++] = '\\';
14091  string_buffer[bytes++] = 'f';
14092  break;
14093  }
14094 
14095  case 0x0D: // carriage return
14096  {
14097  string_buffer[bytes++] = '\\';
14098  string_buffer[bytes++] = 'r';
14099  break;
14100  }
14101 
14102  case 0x22: // quotation mark
14103  {
14104  string_buffer[bytes++] = '\\';
14105  string_buffer[bytes++] = '\"';
14106  break;
14107  }
14108 
14109  case 0x5C: // reverse solidus
14110  {
14111  string_buffer[bytes++] = '\\';
14112  string_buffer[bytes++] = '\\';
14113  break;
14114  }
14115 
14116  default:
14117  {
14118  // escape control characters (0x00..0x1F) or, if
14119  // ensure_ascii parameter is used, non-ASCII characters
14120  if ((codepoint <= 0x1F) or (ensure_ascii and (codepoint >= 0x7F)))
14121  {
14122  if (codepoint <= 0xFFFF)
14123  {
14124  (std::snprintf)(string_buffer.data() + bytes, 7, "\\u%04x",
14125  static_cast<std::uint16_t>(codepoint));
14126  bytes += 6;
14127  }
14128  else
14129  {
14130  (std::snprintf)(string_buffer.data() + bytes, 13, "\\u%04x\\u%04x",
14131  static_cast<std::uint16_t>(0xD7C0u + (codepoint >> 10u)),
14132  static_cast<std::uint16_t>(0xDC00u + (codepoint & 0x3FFu)));
14133  bytes += 12;
14134  }
14135  }
14136  else
14137  {
14138  // copy byte to buffer (all previous bytes
14139  // been copied have in default case above)
14140  string_buffer[bytes++] = s[i];
14141  }
14142  break;
14143  }
14144  }
14145 
14146  // write buffer and reset index; there must be 13 bytes
14147  // left, as this is the maximal number of bytes to be
14148  // written ("\uxxxx\uxxxx\0") for one code point
14149  if (string_buffer.size() - bytes < 13)
14150  {
14151  o->write_characters(string_buffer.data(), bytes);
14152  bytes = 0;
14153  }
14154 
14155  // remember the byte position of this accept
14156  bytes_after_last_accept = bytes;
14157  undumped_chars = 0;
14158  break;
14159  }
14160 
14161  case UTF8_REJECT: // decode found invalid UTF-8 byte
14162  {
14163  switch (error_handler)
14164  {
14166  {
14167  std::string sn(3, '\0');
14168  (std::snprintf)(&sn[0], sn.size(), "%.2X", byte);
14169  JSON_THROW(type_error::create(316, "invalid UTF-8 byte at index " + std::to_string(i) + ": 0x" + sn));
14170  }
14171 
14172  case error_handler_t::ignore:
14173  case error_handler_t::replace:
14174  {
14175  // in case we saw this character the first time, we
14176  // would like to read it again, because the byte
14177  // may be OK for itself, but just not OK for the
14178  // previous sequence
14179  if (undumped_chars > 0)
14180  {
14181  --i;
14182  }
14183 
14184  // reset length buffer to the last accepted index;
14185  // thus removing/ignoring the invalid characters
14186  bytes = bytes_after_last_accept;
14187 
14188  if (error_handler == error_handler_t::replace)
14189  {
14190  // add a replacement character
14191  if (ensure_ascii)
14192  {
14193  string_buffer[bytes++] = '\\';
14194  string_buffer[bytes++] = 'u';
14195  string_buffer[bytes++] = 'f';
14196  string_buffer[bytes++] = 'f';
14197  string_buffer[bytes++] = 'f';
14198  string_buffer[bytes++] = 'd';
14199  }
14200  else
14201  {
14202  string_buffer[bytes++] = detail::binary_writer<BasicJsonType, char>::to_char_type('\xEF');
14203  string_buffer[bytes++] = detail::binary_writer<BasicJsonType, char>::to_char_type('\xBF');
14204  string_buffer[bytes++] = detail::binary_writer<BasicJsonType, char>::to_char_type('\xBD');
14205  }
14206 
14207  // write buffer and reset index; there must be 13 bytes
14208  // left, as this is the maximal number of bytes to be
14209  // written ("\uxxxx\uxxxx\0") for one code point
14210  if (string_buffer.size() - bytes < 13)
14211  {
14212  o->write_characters(string_buffer.data(), bytes);
14213  bytes = 0;
14214  }
14215 
14216  bytes_after_last_accept = bytes;
14217  }
14218 
14219  undumped_chars = 0;
14220 
14221  // continue processing the string
14222  state = UTF8_ACCEPT;
14223  break;
14224  }
14225 
14226  default: // LCOV_EXCL_LINE
14227  assert(false); // LCOV_EXCL_LINE
14228  }
14229  break;
14230  }
14231 
14232  default: // decode found yet incomplete multi-byte code point
14233  {
14234  if (not ensure_ascii)
14235  {
14236  // code point will not be escaped - copy byte to buffer
14237  string_buffer[bytes++] = s[i];
14238  }
14239  ++undumped_chars;
14240  break;
14241  }
14242  }
14243  }
14244 
14245  // we finished processing the string
14246  if (JSON_HEDLEY_LIKELY(state == UTF8_ACCEPT))
14247  {
14248  // write buffer
14249  if (bytes > 0)
14250  {
14251  o->write_characters(string_buffer.data(), bytes);
14252  }
14253  }
14254  else
14255  {
14256  // we finish reading, but do not accept: string was incomplete
14257  switch (error_handler)
14258  {
14260  {
14261  std::string sn(3, '\0');
14262  (std::snprintf)(&sn[0], sn.size(), "%.2X", static_cast<std::uint8_t>(s.back()));
14263  JSON_THROW(type_error::create(316, "incomplete UTF-8 string; last byte: 0x" + sn));
14264  }
14265 
14266  case error_handler_t::ignore:
14267  {
14268  // write all accepted bytes
14269  o->write_characters(string_buffer.data(), bytes_after_last_accept);
14270  break;
14271  }
14272 
14273  case error_handler_t::replace:
14274  {
14275  // write all accepted bytes
14276  o->write_characters(string_buffer.data(), bytes_after_last_accept);
14277  // add a replacement character
14278  if (ensure_ascii)
14279  {
14280  o->write_characters("\\ufffd", 6);
14281  }
14282  else
14283  {
14284  o->write_characters("\xEF\xBF\xBD", 3);
14285  }
14286  break;
14287  }
14288 
14289  default: // LCOV_EXCL_LINE
14290  assert(false); // LCOV_EXCL_LINE
14291  }
14292  }
14293  }
14294 
14295  /*!
14296  @brief count digits
14297 
14298  Count the number of decimal (base 10) digits for an input unsigned integer.
14299 
14300  @param[in] x unsigned integer number to count its digits
14301  @return number of decimal digits
14302  */
14303  inline unsigned int count_digits(number_unsigned_t x) noexcept
14304  {
14305  unsigned int n_digits = 1;
14306  for (;;)
14307  {
14308  if (x < 10)
14309  {
14310  return n_digits;
14311  }
14312  if (x < 100)
14313  {
14314  return n_digits + 1;
14315  }
14316  if (x < 1000)
14317  {
14318  return n_digits + 2;
14319  }
14320  if (x < 10000)
14321  {
14322  return n_digits + 3;
14323  }
14324  x = x / 10000u;
14325  n_digits += 4;
14326  }
14327  }
14328 
14329  /*!
14330  @brief dump an integer
14331 
14332  Dump a given integer to output stream @a o. Works internally with
14333  @a number_buffer.
14334 
14335  @param[in] x integer number (signed or unsigned) to dump
14336  @tparam NumberType either @a number_integer_t or @a number_unsigned_t
14337  */
14338  template<typename NumberType, detail::enable_if_t<
14341  int> = 0>
14342  void dump_integer(NumberType x)
14343  {
14344  static constexpr std::array<std::array<char, 2>, 100> digits_to_99
14345  {
14346  {
14347  {{'0', '0'}}, {{'0', '1'}}, {{'0', '2'}}, {{'0', '3'}}, {{'0', '4'}}, {{'0', '5'}}, {{'0', '6'}}, {{'0', '7'}}, {{'0', '8'}}, {{'0', '9'}},
14348  {{'1', '0'}}, {{'1', '1'}}, {{'1', '2'}}, {{'1', '3'}}, {{'1', '4'}}, {{'1', '5'}}, {{'1', '6'}}, {{'1', '7'}}, {{'1', '8'}}, {{'1', '9'}},
14349  {{'2', '0'}}, {{'2', '1'}}, {{'2', '2'}}, {{'2', '3'}}, {{'2', '4'}}, {{'2', '5'}}, {{'2', '6'}}, {{'2', '7'}}, {{'2', '8'}}, {{'2', '9'}},
14350  {{'3', '0'}}, {{'3', '1'}}, {{'3', '2'}}, {{'3', '3'}}, {{'3', '4'}}, {{'3', '5'}}, {{'3', '6'}}, {{'3', '7'}}, {{'3', '8'}}, {{'3', '9'}},
14351  {{'4', '0'}}, {{'4', '1'}}, {{'4', '2'}}, {{'4', '3'}}, {{'4', '4'}}, {{'4', '5'}}, {{'4', '6'}}, {{'4', '7'}}, {{'4', '8'}}, {{'4', '9'}},
14352  {{'5', '0'}}, {{'5', '1'}}, {{'5', '2'}}, {{'5', '3'}}, {{'5', '4'}}, {{'5', '5'}}, {{'5', '6'}}, {{'5', '7'}}, {{'5', '8'}}, {{'5', '9'}},
14353  {{'6', '0'}}, {{'6', '1'}}, {{'6', '2'}}, {{'6', '3'}}, {{'6', '4'}}, {{'6', '5'}}, {{'6', '6'}}, {{'6', '7'}}, {{'6', '8'}}, {{'6', '9'}},
14354  {{'7', '0'}}, {{'7', '1'}}, {{'7', '2'}}, {{'7', '3'}}, {{'7', '4'}}, {{'7', '5'}}, {{'7', '6'}}, {{'7', '7'}}, {{'7', '8'}}, {{'7', '9'}},
14355  {{'8', '0'}}, {{'8', '1'}}, {{'8', '2'}}, {{'8', '3'}}, {{'8', '4'}}, {{'8', '5'}}, {{'8', '6'}}, {{'8', '7'}}, {{'8', '8'}}, {{'8', '9'}},
14356  {{'9', '0'}}, {{'9', '1'}}, {{'9', '2'}}, {{'9', '3'}}, {{'9', '4'}}, {{'9', '5'}}, {{'9', '6'}}, {{'9', '7'}}, {{'9', '8'}}, {{'9', '9'}},
14357  }
14358  };
14359 
14360  // special case for "0"
14361  if (x == 0)
14362  {
14363  o->write_character('0');
14364  return;
14365  }
14366 
14367  // use a pointer to fill the buffer
14368  auto buffer_ptr = number_buffer.begin();
14369 
14370  const bool is_negative = std::is_same<NumberType, number_integer_t>::value and not(x >= 0); // see issue #755
14371  number_unsigned_t abs_value;
14372 
14373  unsigned int n_chars;
14374 
14375  if (is_negative)
14376  {
14377  *buffer_ptr = '-';
14378  abs_value = remove_sign(x);
14379 
14380  // account one more byte for the minus sign
14381  n_chars = 1 + count_digits(abs_value);
14382  }
14383  else
14384  {
14385  abs_value = static_cast<number_unsigned_t>(x);
14386  n_chars = count_digits(abs_value);
14387  }
14388 
14389  // spare 1 byte for '\0'
14390  assert(n_chars < number_buffer.size() - 1);
14391 
14392  // jump to the end to generate the string from backward
14393  // so we later avoid reversing the result
14394  buffer_ptr += n_chars;
14395 
14396  // Fast int2ascii implementation inspired by "Fastware" talk by Andrei Alexandrescu
14397  // See: https://www.youtube.com/watch?v=o4-CwDo2zpg
14398  while (abs_value >= 100)
14399  {
14400  const auto digits_index = static_cast<unsigned>((abs_value % 100));
14401  abs_value /= 100;
14402  *(--buffer_ptr) = digits_to_99[digits_index][1];
14403  *(--buffer_ptr) = digits_to_99[digits_index][0];
14404  }
14405 
14406  if (abs_value >= 10)
14407  {
14408  const auto digits_index = static_cast<unsigned>(abs_value);
14409  *(--buffer_ptr) = digits_to_99[digits_index][1];
14410  *(--buffer_ptr) = digits_to_99[digits_index][0];
14411  }
14412  else
14413  {
14414  *(--buffer_ptr) = static_cast<char>('0' + abs_value);
14415  }
14416 
14417  o->write_characters(number_buffer.data(), n_chars);
14418  }
14419 
14420  /*!
14421  @brief dump a floating-point number
14422 
14423  Dump a given floating-point number to output stream @a o. Works internally
14424  with @a number_buffer.
14425 
14426  @param[in] x floating-point number to dump
14427  */
14429  {
14430  // NaN / inf
14431  if (not std::isfinite(x))
14432  {
14433  o->write_characters("null", 4);
14434  return;
14435  }
14436 
14437  // If number_float_t is an IEEE-754 single or double precision number,
14438  // use the Grisu2 algorithm to produce short numbers which are
14439  // guaranteed to round-trip, using strtof and strtod, resp.
14440  //
14441  // NB: The test below works if <long double> == <double>.
14442  static constexpr bool is_ieee_single_or_double
14443  = (std::numeric_limits<number_float_t>::is_iec559 and std::numeric_limits<number_float_t>::digits == 24 and std::numeric_limits<number_float_t>::max_exponent == 128) or
14444  (std::numeric_limits<number_float_t>::is_iec559 and std::numeric_limits<number_float_t>::digits == 53 and std::numeric_limits<number_float_t>::max_exponent == 1024);
14445 
14446  dump_float(x, std::integral_constant<bool, is_ieee_single_or_double>());
14447  }
14448 
14449  void dump_float(number_float_t x, std::true_type /*is_ieee_single_or_double*/)
14450  {
14451  char* begin = number_buffer.data();
14452  char* end = ::nlohmann::detail::to_chars(begin, begin + number_buffer.size(), x);
14453 
14454  o->write_characters(begin, static_cast<size_t>(end - begin));
14455  }
14456 
14457  void dump_float(number_float_t x, std::false_type /*is_ieee_single_or_double*/)
14458  {
14459  // get number of digits for a float -> text -> float round-trip
14460  static constexpr auto d = std::numeric_limits<number_float_t>::max_digits10;
14461 
14462  // the actual conversion
14463  std::ptrdiff_t len = (std::snprintf)(number_buffer.data(), number_buffer.size(), "%.*g", d, x);
14464 
14465  // negative value indicates an error
14466  assert(len > 0);
14467  // check if buffer was large enough
14468  assert(static_cast<std::size_t>(len) < number_buffer.size());
14469 
14470  // erase thousands separator
14471  if (thousands_sep != '\0')
14472  {
14473  const auto end = std::remove(number_buffer.begin(),
14474  number_buffer.begin() + len, thousands_sep);
14475  std::fill(end, number_buffer.end(), '\0');
14476  assert((end - number_buffer.begin()) <= len);
14477  len = (end - number_buffer.begin());
14478  }
14479 
14480  // convert decimal point to '.'
14481  if (decimal_point != '\0' and decimal_point != '.')
14482  {
14483  const auto dec_pos = std::find(number_buffer.begin(), number_buffer.end(), decimal_point);
14484  if (dec_pos != number_buffer.end())
14485  {
14486  *dec_pos = '.';
14487  }
14488  }
14489 
14490  o->write_characters(number_buffer.data(), static_cast<std::size_t>(len));
14491 
14492  // determine if need to append ".0"
14493  const bool value_is_int_like =
14494  std::none_of(number_buffer.begin(), number_buffer.begin() + len + 1,
14495  [](char c)
14496  {
14497  return c == '.' or c == 'e';
14498  });
14499 
14500  if (value_is_int_like)
14501  {
14502  o->write_characters(".0", 2);
14503  }
14504  }
14505 
14506  /*!
14507  @brief check whether a string is UTF-8 encoded
14508 
14509  The function checks each byte of a string whether it is UTF-8 encoded. The
14510  result of the check is stored in the @a state parameter. The function must
14511  be called initially with state 0 (accept). State 1 means the string must
14512  be rejected, because the current byte is not allowed. If the string is
14513  completely processed, but the state is non-zero, the string ended
14514  prematurely; that is, the last byte indicated more bytes should have
14515  followed.
14516 
14517  @param[in,out] state the state of the decoding
14518  @param[in,out] codep codepoint (valid only if resulting state is UTF8_ACCEPT)
14519  @param[in] byte next byte to decode
14520  @return new state
14521 
14522  @note The function has been edited: a std::array is used.
14523 
14524  @copyright Copyright (c) 2008-2009 Bjoern Hoehrmann <bjoern@hoehrmann.de>
14525  @sa http://bjoern.hoehrmann.de/utf-8/decoder/dfa/
14526  */
14527  static std::uint8_t decode(std::uint8_t& state, std::uint32_t& codep, const std::uint8_t byte) noexcept
14528  {
14529  static const std::array<std::uint8_t, 400> utf8d =
14530  {
14531  {
14532  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00..1F
14533  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20..3F
14534  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40..5F
14535  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60..7F
14536  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, // 80..9F
14537  7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, // A0..BF
14538  8, 8, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // C0..DF
14539  0xA, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x4, 0x3, 0x3, // E0..EF
14540  0xB, 0x6, 0x6, 0x6, 0x5, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, // F0..FF
14541  0x0, 0x1, 0x2, 0x3, 0x5, 0x8, 0x7, 0x1, 0x1, 0x1, 0x4, 0x6, 0x1, 0x1, 0x1, 0x1, // s0..s0
14542  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, // s1..s2
14543  1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, // s3..s4
14544  1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, // s5..s6
14545  1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 // s7..s8
14546  }
14547  };
14548 
14549  const std::uint8_t type = utf8d[byte];
14550 
14551  codep = (state != UTF8_ACCEPT)
14552  ? (byte & 0x3fu) | (codep << 6u)
14553  : (0xFFu >> type) & (byte);
14554 
14555  state = utf8d[256u + state * 16u + type];
14556  return state;
14557  }
14558 
14559  /*
14560  * Overload to make the compiler happy while it is instantiating
14561  * dump_integer for number_unsigned_t.
14562  * Must never be called.
14563  */
14565  {
14566  assert(false); // LCOV_EXCL_LINE
14567  return x; // LCOV_EXCL_LINE
14568  }
14569 
14570  /*
14571  * Helper function for dump_integer
14572  *
14573  * This function takes a negative signed integer and returns its absolute
14574  * value as unsigned integer. The plus/minus shuffling is necessary as we can
14575  * not directly remove the sign of an arbitrary signed integer as the
14576  * absolute values of INT_MIN and INT_MAX are usually not the same. See
14577  * #1708 for details.
14578  */
14580  {
14581  assert(x < 0 and x < (std::numeric_limits<number_integer_t>::max)());
14582  return static_cast<number_unsigned_t>(-(x + 1)) + 1;
14583  }
14584 
14585  private:
14586  /// the output of the serializer
14588 
14589  /// a (hopefully) large enough character buffer
14590  std::array<char, 64> number_buffer{{}};
14591 
14592  /// the locale
14593  const std::lconv* loc = nullptr;
14594  /// the locale's thousand separator character
14595  const char thousands_sep = '\0';
14596  /// the locale's decimal point character
14597  const char decimal_point = '\0';
14598 
14599  /// string buffer
14600  std::array<char, 512> string_buffer{{}};
14601 
14602  /// the indentation character
14603  const char indent_char;
14604  /// the indentation string
14606 
14607  /// error_handler how to react on decoding errors
14609 };
14610 } // namespace detail
14611 } // namespace nlohmann
14612 
14613 // #include <nlohmann/detail/value_t.hpp>
14614 
14615 // #include <nlohmann/json_fwd.hpp>
14616 
14617 
14618 /*!
14619 @brief namespace for Niels Lohmann
14620 @see https://github.com/nlohmann
14621 @since version 1.0.0
14622 */
14623 namespace nlohmann
14624 {
14625 
14626 /*!
14627 @brief a class to store JSON values
14628 
14629 @tparam ObjectType type for JSON objects (`std::map` by default; will be used
14630 in @ref object_t)
14631 @tparam ArrayType type for JSON arrays (`std::vector` by default; will be used
14632 in @ref array_t)
14633 @tparam StringType type for JSON strings and object keys (`std::string` by
14634 default; will be used in @ref string_t)
14635 @tparam BooleanType type for JSON booleans (`bool` by default; will be used
14636 in @ref boolean_t)
14637 @tparam NumberIntegerType type for JSON integer numbers (`int64_t` by
14638 default; will be used in @ref number_integer_t)
14639 @tparam NumberUnsignedType type for JSON unsigned integer numbers (@c
14640 `uint64_t` by default; will be used in @ref number_unsigned_t)
14641 @tparam NumberFloatType type for JSON floating-point numbers (`double` by
14642 default; will be used in @ref number_float_t)
14643 @tparam AllocatorType type of the allocator to use (`std::allocator` by
14644 default)
14645 @tparam JSONSerializer the serializer to resolve internal calls to `to_json()`
14646 and `from_json()` (@ref adl_serializer by default)
14647 
14648 @requirement The class satisfies the following concept requirements:
14649 - Basic
14650  - [DefaultConstructible](https://en.cppreference.com/w/cpp/named_req/DefaultConstructible):
14651  JSON values can be default constructed. The result will be a JSON null
14652  value.
14653  - [MoveConstructible](https://en.cppreference.com/w/cpp/named_req/MoveConstructible):
14654  A JSON value can be constructed from an rvalue argument.
14655  - [CopyConstructible](https://en.cppreference.com/w/cpp/named_req/CopyConstructible):
14656  A JSON value can be copy-constructed from an lvalue expression.
14657  - [MoveAssignable](https://en.cppreference.com/w/cpp/named_req/MoveAssignable):
14658  A JSON value van be assigned from an rvalue argument.
14659  - [CopyAssignable](https://en.cppreference.com/w/cpp/named_req/CopyAssignable):
14660  A JSON value can be copy-assigned from an lvalue expression.
14661  - [Destructible](https://en.cppreference.com/w/cpp/named_req/Destructible):
14662  JSON values can be destructed.
14663 - Layout
14664  - [StandardLayoutType](https://en.cppreference.com/w/cpp/named_req/StandardLayoutType):
14665  JSON values have
14666  [standard layout](https://en.cppreference.com/w/cpp/language/data_members#Standard_layout):
14667  All non-static data members are private and standard layout types, the
14668  class has no virtual functions or (virtual) base classes.
14669 - Library-wide
14670  - [EqualityComparable](https://en.cppreference.com/w/cpp/named_req/EqualityComparable):
14671  JSON values can be compared with `==`, see @ref
14672  operator==(const_reference,const_reference).
14673  - [LessThanComparable](https://en.cppreference.com/w/cpp/named_req/LessThanComparable):
14674  JSON values can be compared with `<`, see @ref
14675  operator<(const_reference,const_reference).
14676  - [Swappable](https://en.cppreference.com/w/cpp/named_req/Swappable):
14677  Any JSON lvalue or rvalue of can be swapped with any lvalue or rvalue of
14678  other compatible types, using unqualified function call @ref swap().
14679  - [NullablePointer](https://en.cppreference.com/w/cpp/named_req/NullablePointer):
14680  JSON values can be compared against `std::nullptr_t` objects which are used
14681  to model the `null` value.
14682 - Container
14683  - [Container](https://en.cppreference.com/w/cpp/named_req/Container):
14684  JSON values can be used like STL containers and provide iterator access.
14685  - [ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer);
14686  JSON values can be used like STL containers and provide reverse iterator
14687  access.
14688 
14689 @invariant The member variables @a m_value and @a m_type have the following
14690 relationship:
14691 - If `m_type == value_t::object`, then `m_value.object != nullptr`.
14692 - If `m_type == value_t::array`, then `m_value.array != nullptr`.
14693 - If `m_type == value_t::string`, then `m_value.string != nullptr`.
14694 The invariants are checked by member function assert_invariant().
14695 
14696 @internal
14697 @note ObjectType trick from http://stackoverflow.com/a/9860911
14698 @endinternal
14699 
14700 @see [RFC 7159: The JavaScript Object Notation (JSON) Data Interchange
14701 Format](http://rfc7159.net/rfc7159)
14702 
14703 @since version 1.0.0
14704 
14705 @nosubgrouping
14706 */
14708 class basic_json
14709 {
14710  private:
14711  template<detail::value_t> friend struct detail::external_constructor;
14712  friend ::nlohmann::json_pointer<basic_json>;
14713  friend ::nlohmann::detail::parser<basic_json>;
14714  friend ::nlohmann::detail::serializer<basic_json>;
14715  template<typename BasicJsonType>
14716  friend class ::nlohmann::detail::iter_impl;
14717  template<typename BasicJsonType, typename CharType>
14718  friend class ::nlohmann::detail::binary_writer;
14719  template<typename BasicJsonType, typename SAX>
14720  friend class ::nlohmann::detail::binary_reader;
14721  template<typename BasicJsonType>
14722  friend class ::nlohmann::detail::json_sax_dom_parser;
14723  template<typename BasicJsonType>
14724  friend class ::nlohmann::detail::json_sax_dom_callback_parser;
14725 
14726  /// workaround type for MSVC
14728 
14729  // convenience aliases for types residing in namespace detail;
14732 
14734  template<typename BasicJsonType>
14736  template<typename BasicJsonType>
14738  template<typename Iterator>
14741 
14742  template<typename CharType>
14744 
14747 
14749 
14750  public:
14752  /// JSON Pointer, see @ref nlohmann::json_pointer
14754  template<typename T, typename SFINAE>
14755  using json_serializer = JSONSerializer<T, SFINAE>;
14756  /// how to treat decoding errors
14758  /// helper type for initializer lists of basic_json values
14759  using initializer_list_t = std::initializer_list<detail::json_ref<basic_json>>;
14760 
14762  /// SAX interface type, see @ref nlohmann::json_sax
14764 
14765  ////////////////
14766  // exceptions //
14767  ////////////////
14768 
14769  /// @name exceptions
14770  /// Classes to implement user-defined exceptions.
14771  /// @{
14772 
14773  /// @copydoc detail::exception
14775  /// @copydoc detail::parse_error
14777  /// @copydoc detail::invalid_iterator
14779  /// @copydoc detail::type_error
14781  /// @copydoc detail::out_of_range
14783  /// @copydoc detail::other_error
14785 
14786  /// @}
14787 
14788 
14789  /////////////////////
14790  // container types //
14791  /////////////////////
14792 
14793  /// @name container types
14794  /// The canonic container types to use @ref basic_json like any other STL
14795  /// container.
14796  /// @{
14797 
14798  /// the type of elements in a basic_json container
14800 
14801  /// the type of an element reference
14803  /// the type of an element const reference
14804  using const_reference = const value_type&;
14805 
14806  /// a type to represent differences between iterators
14807  using difference_type = std::ptrdiff_t;
14808  /// a type to represent container sizes
14809  using size_type = std::size_t;
14810 
14811  /// the allocator type
14812  using allocator_type = AllocatorType<basic_json>;
14813 
14814  /// the type of an element pointer
14815  using pointer = typename std::allocator_traits<allocator_type>::pointer;
14816  /// the type of an element const pointer
14817  using const_pointer = typename std::allocator_traits<allocator_type>::const_pointer;
14818 
14819  /// an iterator for a basic_json container
14821  /// a const iterator for a basic_json container
14823  /// a reverse iterator for a basic_json container
14825  /// a const reverse iterator for a basic_json container
14827 
14828  /// @}
14829 
14830 
14831  /*!
14832  @brief returns the allocator associated with the container
14833  */
14835  {
14836  return allocator_type();
14837  }
14838 
14839  /*!
14840  @brief returns version information on the library
14841 
14842  This function returns a JSON object with information about the library,
14843  including the version number and information on the platform and compiler.
14844 
14845  @return JSON object holding version information
14846  key | description
14847  ----------- | ---------------
14848  `compiler` | Information on the used compiler. It is an object with the following keys: `c++` (the used C++ standard), `family` (the compiler family; possible values are `clang`, `icc`, `gcc`, `ilecpp`, `msvc`, `pgcpp`, `sunpro`, and `unknown`), and `version` (the compiler version).
14849  `copyright` | The copyright line for the library as string.
14850  `name` | The name of the library as string.
14851  `platform` | The used platform as string. Possible values are `win32`, `linux`, `apple`, `unix`, and `unknown`.
14852  `url` | The URL of the project as string.
14853  `version` | The version of the library. It is an object with the following keys: `major`, `minor`, and `patch` as defined by [Semantic Versioning](http://semver.org), and `string` (the version string).
14854 
14855  @liveexample{The following code shows an example output of the `meta()`
14856  function.,meta}
14857 
14858  @exceptionsafety Strong guarantee: if an exception is thrown, there are no
14859  changes to any JSON value.
14860 
14861  @complexity Constant.
14862 
14863  @since 2.1.0
14864  */
14866  static basic_json meta()
14867  {
14868  basic_json result;
14869 
14870  result["copyright"] = "(C) 2013-2017 Niels Lohmann";
14871  result["name"] = "JSON for Modern C++";
14872  result["url"] = "https://github.com/nlohmann/json";
14873  result["version"]["string"] =
14877  result["version"]["major"] = NLOHMANN_JSON_VERSION_MAJOR;
14878  result["version"]["minor"] = NLOHMANN_JSON_VERSION_MINOR;
14879  result["version"]["patch"] = NLOHMANN_JSON_VERSION_PATCH;
14880 
14881 #ifdef _WIN32
14882  result["platform"] = "win32";
14883 #elif defined __linux__
14884  result["platform"] = "linux";
14885 #elif defined __APPLE__
14886  result["platform"] = "apple";
14887 #elif defined __unix__
14888  result["platform"] = "unix";
14889 #else
14890  result["platform"] = "unknown";
14891 #endif
14892 
14893 #if defined(__ICC) || defined(__INTEL_COMPILER)
14894  result["compiler"] = {{"family", "icc"}, {"version", __INTEL_COMPILER}};
14895 #elif defined(__clang__)
14896  result["compiler"] = {{"family", "clang"}, {"version", __clang_version__}};
14897 #elif defined(__GNUC__) || defined(__GNUG__)
14898  result["compiler"] = {{"family", "gcc"}, {"version", std::to_string(__GNUC__) + "." + std::to_string(__GNUC_MINOR__) + "." + std::to_string(__GNUC_PATCHLEVEL__)}};
14899 #elif defined(__HP_cc) || defined(__HP_aCC)
14900  result["compiler"] = "hp"
14901 #elif defined(__IBMCPP__)
14902  result["compiler"] = {{"family", "ilecpp"}, {"version", __IBMCPP__}};
14903 #elif defined(_MSC_VER)
14904  result["compiler"] = {{"family", "msvc"}, {"version", _MSC_VER}};
14905 #elif defined(__PGI)
14906  result["compiler"] = {{"family", "pgcpp"}, {"version", __PGI}};
14907 #elif defined(__SUNPRO_CC)
14908  result["compiler"] = {{"family", "sunpro"}, {"version", __SUNPRO_CC}};
14909 #else
14910  result["compiler"] = {{"family", "unknown"}, {"version", "unknown"}};
14911 #endif
14912 
14913 #ifdef __cplusplus
14914  result["compiler"]["c++"] = std::to_string(__cplusplus);
14915 #else
14916  result["compiler"]["c++"] = "unknown";
14917 #endif
14918  return result;
14919  }
14920 
14921 
14922  ///////////////////////////
14923  // JSON value data types //
14924  ///////////////////////////
14925 
14926  /// @name JSON value data types
14927  /// The data types to store a JSON value. These types are derived from
14928  /// the template arguments passed to class @ref basic_json.
14929  /// @{
14930 
14931 #if defined(JSON_HAS_CPP_14)
14932  // Use transparent comparator if possible, combined with perfect forwarding
14933  // on find() and count() calls prevents unnecessary string construction.
14934  using object_comparator_t = std::less<>;
14935 #else
14936  using object_comparator_t = std::less<StringType>;
14937 #endif
14938 
14939  /*!
14940  @brief a type for an object
14941 
14942  [RFC 7159](http://rfc7159.net/rfc7159) describes JSON objects as follows:
14943  > An object is an unordered collection of zero or more name/value pairs,
14944  > where a name is a string and a value is a string, number, boolean, null,
14945  > object, or array.
14946 
14947  To store objects in C++, a type is defined by the template parameters
14948  described below.
14949 
14950  @tparam ObjectType the container to store objects (e.g., `std::map` or
14951  `std::unordered_map`)
14952  @tparam StringType the type of the keys or names (e.g., `std::string`).
14953  The comparison function `std::less<StringType>` is used to order elements
14954  inside the container.
14955  @tparam AllocatorType the allocator to use for objects (e.g.,
14956  `std::allocator`)
14957 
14958  #### Default type
14959 
14960  With the default values for @a ObjectType (`std::map`), @a StringType
14961  (`std::string`), and @a AllocatorType (`std::allocator`), the default
14962  value for @a object_t is:
14963 
14964  @code {.cpp}
14965  std::map<
14966  std::string, // key_type
14967  basic_json, // value_type
14968  std::less<std::string>, // key_compare
14969  std::allocator<std::pair<const std::string, basic_json>> // allocator_type
14970  >
14971  @endcode
14972 
14973  #### Behavior
14974 
14975  The choice of @a object_t influences the behavior of the JSON class. With
14976  the default type, objects have the following behavior:
14977 
14978  - When all names are unique, objects will be interoperable in the sense
14979  that all software implementations receiving that object will agree on
14980  the name-value mappings.
14981  - When the names within an object are not unique, it is unspecified which
14982  one of the values for a given key will be chosen. For instance,
14983  `{"key": 2, "key": 1}` could be equal to either `{"key": 1}` or
14984  `{"key": 2}`.
14985  - Internally, name/value pairs are stored in lexicographical order of the
14986  names. Objects will also be serialized (see @ref dump) in this order.
14987  For instance, `{"b": 1, "a": 2}` and `{"a": 2, "b": 1}` will be stored
14988  and serialized as `{"a": 2, "b": 1}`.
14989  - When comparing objects, the order of the name/value pairs is irrelevant.
14990  This makes objects interoperable in the sense that they will not be
14991  affected by these differences. For instance, `{"b": 1, "a": 2}` and
14992  `{"a": 2, "b": 1}` will be treated as equal.
14993 
14994  #### Limits
14995 
14996  [RFC 7159](http://rfc7159.net/rfc7159) specifies:
14997  > An implementation may set limits on the maximum depth of nesting.
14998 
14999  In this class, the object's limit of nesting is not explicitly constrained.
15000  However, a maximum depth of nesting may be introduced by the compiler or
15001  runtime environment. A theoretical limit can be queried by calling the
15002  @ref max_size function of a JSON object.
15003 
15004  #### Storage
15005 
15006  Objects are stored as pointers in a @ref basic_json type. That is, for any
15007  access to object values, a pointer of type `object_t*` must be
15008  dereferenced.
15009 
15010  @sa @ref array_t -- type for an array value
15011 
15012  @since version 1.0.0
15013 
15014  @note The order name/value pairs are added to the object is *not*
15015  preserved by the library. Therefore, iterating an object may return
15016  name/value pairs in a different order than they were originally stored. In
15017  fact, keys will be traversed in alphabetical order as `std::map` with
15018  `std::less` is used by default. Please note this behavior conforms to [RFC
15019  7159](http://rfc7159.net/rfc7159), because any order implements the
15020  specified "unordered" nature of JSON objects.
15021  */
15022  using object_t = ObjectType<StringType,
15023  basic_json,
15025  AllocatorType<std::pair<const StringType,
15027 
15028  /*!
15029  @brief a type for an array
15030 
15031  [RFC 7159](http://rfc7159.net/rfc7159) describes JSON arrays as follows:
15032  > An array is an ordered sequence of zero or more values.
15033 
15034  To store objects in C++, a type is defined by the template parameters
15035  explained below.
15036 
15037  @tparam ArrayType container type to store arrays (e.g., `std::vector` or
15038  `std::list`)
15039  @tparam AllocatorType allocator to use for arrays (e.g., `std::allocator`)
15040 
15041  #### Default type
15042 
15043  With the default values for @a ArrayType (`std::vector`) and @a
15044  AllocatorType (`std::allocator`), the default value for @a array_t is:
15045 
15046  @code {.cpp}
15047  std::vector<
15048  basic_json, // value_type
15049  std::allocator<basic_json> // allocator_type
15050  >
15051  @endcode
15052 
15053  #### Limits
15054 
15055  [RFC 7159](http://rfc7159.net/rfc7159) specifies:
15056  > An implementation may set limits on the maximum depth of nesting.
15057 
15058  In this class, the array's limit of nesting is not explicitly constrained.
15059  However, a maximum depth of nesting may be introduced by the compiler or
15060  runtime environment. A theoretical limit can be queried by calling the
15061  @ref max_size function of a JSON array.
15062 
15063  #### Storage
15064 
15065  Arrays are stored as pointers in a @ref basic_json type. That is, for any
15066  access to array values, a pointer of type `array_t*` must be dereferenced.
15067 
15068  @sa @ref object_t -- type for an object value
15069 
15070  @since version 1.0.0
15071  */
15072  using array_t = ArrayType<basic_json, AllocatorType<basic_json>>;
15073 
15074  /*!
15075  @brief a type for a string
15076 
15077  [RFC 7159](http://rfc7159.net/rfc7159) describes JSON strings as follows:
15078  > A string is a sequence of zero or more Unicode characters.
15079 
15080  To store objects in C++, a type is defined by the template parameter
15081  described below. Unicode values are split by the JSON class into
15082  byte-sized characters during deserialization.
15083 
15084  @tparam StringType the container to store strings (e.g., `std::string`).
15085  Note this container is used for keys/names in objects, see @ref object_t.
15086 
15087  #### Default type
15088 
15089  With the default values for @a StringType (`std::string`), the default
15090  value for @a string_t is:
15091 
15092  @code {.cpp}
15093  std::string
15094  @endcode
15095 
15096  #### Encoding
15097 
15098  Strings are stored in UTF-8 encoding. Therefore, functions like
15099  `std::string::size()` or `std::string::length()` return the number of
15100  bytes in the string rather than the number of characters or glyphs.
15101 
15102  #### String comparison
15103 
15104  [RFC 7159](http://rfc7159.net/rfc7159) states:
15105  > Software implementations are typically required to test names of object
15106  > members for equality. Implementations that transform the textual
15107  > representation into sequences of Unicode code units and then perform the
15108  > comparison numerically, code unit by code unit, are interoperable in the
15109  > sense that implementations will agree in all cases on equality or
15110  > inequality of two strings. For example, implementations that compare
15111  > strings with escaped characters unconverted may incorrectly find that
15112  > `"a\\b"` and `"a\u005Cb"` are not equal.
15113 
15114  This implementation is interoperable as it does compare strings code unit
15115  by code unit.
15116 
15117  #### Storage
15118 
15119  String values are stored as pointers in a @ref basic_json type. That is,
15120  for any access to string values, a pointer of type `string_t*` must be
15121  dereferenced.
15122 
15123  @since version 1.0.0
15124  */
15125  using string_t = StringType;
15126 
15127  /*!
15128  @brief a type for a boolean
15129 
15130  [RFC 7159](http://rfc7159.net/rfc7159) implicitly describes a boolean as a
15131  type which differentiates the two literals `true` and `false`.
15132 
15133  To store objects in C++, a type is defined by the template parameter @a
15134  BooleanType which chooses the type to use.
15135 
15136  #### Default type
15137 
15138  With the default values for @a BooleanType (`bool`), the default value for
15139  @a boolean_t is:
15140 
15141  @code {.cpp}
15142  bool
15143  @endcode
15144 
15145  #### Storage
15146 
15147  Boolean values are stored directly inside a @ref basic_json type.
15148 
15149  @since version 1.0.0
15150  */
15151  using boolean_t = BooleanType;
15152 
15153  /*!
15154  @brief a type for a number (integer)
15155 
15156  [RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows:
15157  > The representation of numbers is similar to that used in most
15158  > programming languages. A number is represented in base 10 using decimal
15159  > digits. It contains an integer component that may be prefixed with an
15160  > optional minus sign, which may be followed by a fraction part and/or an
15161  > exponent part. Leading zeros are not allowed. (...) Numeric values that
15162  > cannot be represented in the grammar below (such as Infinity and NaN)
15163  > are not permitted.
15164 
15165  This description includes both integer and floating-point numbers.
15166  However, C++ allows more precise storage if it is known whether the number
15167  is a signed integer, an unsigned integer or a floating-point number.
15168  Therefore, three different types, @ref number_integer_t, @ref
15169  number_unsigned_t and @ref number_float_t are used.
15170 
15171  To store integer numbers in C++, a type is defined by the template
15172  parameter @a NumberIntegerType which chooses the type to use.
15173 
15174  #### Default type
15175 
15176  With the default values for @a NumberIntegerType (`int64_t`), the default
15177  value for @a number_integer_t is:
15178 
15179  @code {.cpp}
15180  int64_t
15181  @endcode
15182 
15183  #### Default behavior
15184 
15185  - The restrictions about leading zeros is not enforced in C++. Instead,
15186  leading zeros in integer literals lead to an interpretation as octal
15187  number. Internally, the value will be stored as decimal number. For
15188  instance, the C++ integer literal `010` will be serialized to `8`.
15189  During deserialization, leading zeros yield an error.
15190  - Not-a-number (NaN) values will be serialized to `null`.
15191 
15192  #### Limits
15193 
15194  [RFC 7159](http://rfc7159.net/rfc7159) specifies:
15195  > An implementation may set limits on the range and precision of numbers.
15196 
15197  When the default type is used, the maximal integer number that can be
15198  stored is `9223372036854775807` (INT64_MAX) and the minimal integer number
15199  that can be stored is `-9223372036854775808` (INT64_MIN). Integer numbers
15200  that are out of range will yield over/underflow when used in a
15201  constructor. During deserialization, too large or small integer numbers
15202  will be automatically be stored as @ref number_unsigned_t or @ref
15203  number_float_t.
15204 
15205  [RFC 7159](http://rfc7159.net/rfc7159) further states:
15206  > Note that when such software is used, numbers that are integers and are
15207  > in the range \f$[-2^{53}+1, 2^{53}-1]\f$ are interoperable in the sense
15208  > that implementations will agree exactly on their numeric values.
15209 
15210  As this range is a subrange of the exactly supported range [INT64_MIN,
15211  INT64_MAX], this class's integer type is interoperable.
15212 
15213  #### Storage
15214 
15215  Integer number values are stored directly inside a @ref basic_json type.
15216 
15217  @sa @ref number_float_t -- type for number values (floating-point)
15218 
15219  @sa @ref number_unsigned_t -- type for number values (unsigned integer)
15220 
15221  @since version 1.0.0
15222  */
15223  using number_integer_t = NumberIntegerType;
15224 
15225  /*!
15226  @brief a type for a number (unsigned)
15227 
15228  [RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows:
15229  > The representation of numbers is similar to that used in most
15230  > programming languages. A number is represented in base 10 using decimal
15231  > digits. It contains an integer component that may be prefixed with an
15232  > optional minus sign, which may be followed by a fraction part and/or an
15233  > exponent part. Leading zeros are not allowed. (...) Numeric values that
15234  > cannot be represented in the grammar below (such as Infinity and NaN)
15235  > are not permitted.
15236 
15237  This description includes both integer and floating-point numbers.
15238  However, C++ allows more precise storage if it is known whether the number
15239  is a signed integer, an unsigned integer or a floating-point number.
15240  Therefore, three different types, @ref number_integer_t, @ref
15241  number_unsigned_t and @ref number_float_t are used.
15242 
15243  To store unsigned integer numbers in C++, a type is defined by the
15244  template parameter @a NumberUnsignedType which chooses the type to use.
15245 
15246  #### Default type
15247 
15248  With the default values for @a NumberUnsignedType (`uint64_t`), the
15249  default value for @a number_unsigned_t is:
15250 
15251  @code {.cpp}
15252  uint64_t
15253  @endcode
15254 
15255  #### Default behavior
15256 
15257  - The restrictions about leading zeros is not enforced in C++. Instead,
15258  leading zeros in integer literals lead to an interpretation as octal
15259  number. Internally, the value will be stored as decimal number. For
15260  instance, the C++ integer literal `010` will be serialized to `8`.
15261  During deserialization, leading zeros yield an error.
15262  - Not-a-number (NaN) values will be serialized to `null`.
15263 
15264  #### Limits
15265 
15266  [RFC 7159](http://rfc7159.net/rfc7159) specifies:
15267  > An implementation may set limits on the range and precision of numbers.
15268 
15269  When the default type is used, the maximal integer number that can be
15270  stored is `18446744073709551615` (UINT64_MAX) and the minimal integer
15271  number that can be stored is `0`. Integer numbers that are out of range
15272  will yield over/underflow when used in a constructor. During
15273  deserialization, too large or small integer numbers will be automatically
15274  be stored as @ref number_integer_t or @ref number_float_t.
15275 
15276  [RFC 7159](http://rfc7159.net/rfc7159) further states:
15277  > Note that when such software is used, numbers that are integers and are
15278  > in the range \f$[-2^{53}+1, 2^{53}-1]\f$ are interoperable in the sense
15279  > that implementations will agree exactly on their numeric values.
15280 
15281  As this range is a subrange (when considered in conjunction with the
15282  number_integer_t type) of the exactly supported range [0, UINT64_MAX],
15283  this class's integer type is interoperable.
15284 
15285  #### Storage
15286 
15287  Integer number values are stored directly inside a @ref basic_json type.
15288 
15289  @sa @ref number_float_t -- type for number values (floating-point)
15290  @sa @ref number_integer_t -- type for number values (integer)
15291 
15292  @since version 2.0.0
15293  */
15294  using number_unsigned_t = NumberUnsignedType;
15295 
15296  /*!
15297  @brief a type for a number (floating-point)
15298 
15299  [RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows:
15300  > The representation of numbers is similar to that used in most
15301  > programming languages. A number is represented in base 10 using decimal
15302  > digits. It contains an integer component that may be prefixed with an
15303  > optional minus sign, which may be followed by a fraction part and/or an
15304  > exponent part. Leading zeros are not allowed. (...) Numeric values that
15305  > cannot be represented in the grammar below (such as Infinity and NaN)
15306  > are not permitted.
15307 
15308  This description includes both integer and floating-point numbers.
15309  However, C++ allows more precise storage if it is known whether the number
15310  is a signed integer, an unsigned integer or a floating-point number.
15311  Therefore, three different types, @ref number_integer_t, @ref
15312  number_unsigned_t and @ref number_float_t are used.
15313 
15314  To store floating-point numbers in C++, a type is defined by the template
15315  parameter @a NumberFloatType which chooses the type to use.
15316 
15317  #### Default type
15318 
15319  With the default values for @a NumberFloatType (`double`), the default
15320  value for @a number_float_t is:
15321 
15322  @code {.cpp}
15323  double
15324  @endcode
15325 
15326  #### Default behavior
15327 
15328  - The restrictions about leading zeros is not enforced in C++. Instead,
15329  leading zeros in floating-point literals will be ignored. Internally,
15330  the value will be stored as decimal number. For instance, the C++
15331  floating-point literal `01.2` will be serialized to `1.2`. During
15332  deserialization, leading zeros yield an error.
15333  - Not-a-number (NaN) values will be serialized to `null`.
15334 
15335  #### Limits
15336 
15337  [RFC 7159](http://rfc7159.net/rfc7159) states:
15338  > This specification allows implementations to set limits on the range and
15339  > precision of numbers accepted. Since software that implements IEEE
15340  > 754-2008 binary64 (double precision) numbers is generally available and
15341  > widely used, good interoperability can be achieved by implementations
15342  > that expect no more precision or range than these provide, in the sense
15343  > that implementations will approximate JSON numbers within the expected
15344  > precision.
15345 
15346  This implementation does exactly follow this approach, as it uses double
15347  precision floating-point numbers. Note values smaller than
15348  `-1.79769313486232e+308` and values greater than `1.79769313486232e+308`
15349  will be stored as NaN internally and be serialized to `null`.
15350 
15351  #### Storage
15352 
15353  Floating-point number values are stored directly inside a @ref basic_json
15354  type.
15355 
15356  @sa @ref number_integer_t -- type for number values (integer)
15357 
15358  @sa @ref number_unsigned_t -- type for number values (unsigned integer)
15359 
15360  @since version 1.0.0
15361  */
15362  using number_float_t = NumberFloatType;
15363 
15364  /// @}
15365 
15366  private:
15367 
15368  /// helper for exception-safe object creation
15369  template<typename T, typename... Args>
15371  static T* create(Args&& ... args)
15372  {
15373  AllocatorType<T> alloc;
15374  using AllocatorTraits = std::allocator_traits<AllocatorType<T>>;
15375 
15376  auto deleter = [&](T * object)
15377  {
15378  AllocatorTraits::deallocate(alloc, object, 1);
15379  };
15380  std::unique_ptr<T, decltype(deleter)> object(AllocatorTraits::allocate(alloc, 1), deleter);
15381  AllocatorTraits::construct(alloc, object.get(), std::forward<Args>(args)...);
15382  assert(object != nullptr);
15383  return object.release();
15384  }
15385 
15386  ////////////////////////
15387  // JSON value storage //
15388  ////////////////////////
15389 
15390  /*!
15391  @brief a JSON value
15392 
15393  The actual storage for a JSON value of the @ref basic_json class. This
15394  union combines the different storage types for the JSON value types
15395  defined in @ref value_t.
15396 
15397  JSON type | value_t type | used type
15398  --------- | --------------- | ------------------------
15399  object | object | pointer to @ref object_t
15400  array | array | pointer to @ref array_t
15401  string | string | pointer to @ref string_t
15402  boolean | boolean | @ref boolean_t
15403  number | number_integer | @ref number_integer_t
15404  number | number_unsigned | @ref number_unsigned_t
15405  number | number_float | @ref number_float_t
15406  null | null | *no value is stored*
15407 
15408  @note Variable-length types (objects, arrays, and strings) are stored as
15409  pointers. The size of the union should not exceed 64 bits if the default
15410  value types are used.
15411 
15412  @since version 1.0.0
15413  */
15415  {
15416  /// object (stored with pointer to save storage)
15418  /// array (stored with pointer to save storage)
15420  /// string (stored with pointer to save storage)
15422  /// boolean
15424  /// number (integer)
15426  /// number (unsigned integer)
15428  /// number (floating-point)
15430 
15431  /// default constructor (for null values)
15432  json_value() = default;
15433  /// constructor for booleans
15434  json_value(boolean_t v) noexcept : boolean(v) {}
15435  /// constructor for numbers (integer)
15436  json_value(number_integer_t v) noexcept : number_integer(v) {}
15437  /// constructor for numbers (unsigned)
15438  json_value(number_unsigned_t v) noexcept : number_unsigned(v) {}
15439  /// constructor for numbers (floating-point)
15440  json_value(number_float_t v) noexcept : number_float(v) {}
15441  /// constructor for empty values of a given type
15443  {
15444  switch (t)
15445  {
15446  case value_t::object:
15447  {
15448  object = create<object_t>();
15449  break;
15450  }
15451 
15452  case value_t::array:
15453  {
15454  array = create<array_t>();
15455  break;
15456  }
15457 
15458  case value_t::string:
15459  {
15460  string = create<string_t>("");
15461  break;
15462  }
15463 
15464  case value_t::boolean:
15465  {
15466  boolean = boolean_t(false);
15467  break;
15468  }
15469 
15470  case value_t::number_integer:
15471  {
15472  number_integer = number_integer_t(0);
15473  break;
15474  }
15475 
15476  case value_t::number_unsigned:
15477  {
15478  number_unsigned = number_unsigned_t(0);
15479  break;
15480  }
15481 
15482  case value_t::number_float:
15483  {
15484  number_float = number_float_t(0.0);
15485  break;
15486  }
15487 
15488  case value_t::null:
15489  {
15490  object = nullptr; // silence warning, see #821
15491  break;
15492  }
15493 
15494  default:
15495  {
15496  object = nullptr; // silence warning, see #821
15498  {
15499  JSON_THROW(other_error::create(500, "961c151d2e87f2686a955a9be24d316f1362bf21 3.7.3")); // LCOV_EXCL_LINE
15500  }
15501  break;
15502  }
15503  }
15504  }
15505 
15506  /// constructor for strings
15508  {
15509  string = create<string_t>(value);
15510  }
15511 
15512  /// constructor for rvalue strings
15514  {
15515  string = create<string_t>(std::move(value));
15516  }
15517 
15518  /// constructor for objects
15520  {
15521  object = create<object_t>(value);
15522  }
15523 
15524  /// constructor for rvalue objects
15526  {
15527  object = create<object_t>(std::move(value));
15528  }
15529 
15530  /// constructor for arrays
15532  {
15533  array = create<array_t>(value);
15534  }
15535 
15536  /// constructor for rvalue arrays
15538  {
15539  array = create<array_t>(std::move(value));
15540  }
15541 
15542  void destroy(value_t t) noexcept
15543  {
15544  // flatten the current json_value to a heap-allocated stack
15545  std::vector<basic_json> stack;
15546 
15547  // move the top-level items to stack
15548  if (t == value_t::array)
15549  {
15550  stack.reserve(array->size());
15551  std::move(array->begin(), array->end(), std::back_inserter(stack));
15552  }
15553  else if (t == value_t::object)
15554  {
15555  stack.reserve(object->size());
15556  for (auto&& it : *object)
15557  {
15558  stack.push_back(std::move(it.second));
15559  }
15560  }
15561 
15562  while (not stack.empty())
15563  {
15564  // move the last item to local variable to be processed
15565  basic_json current_item(std::move(stack.back()));
15566  stack.pop_back();
15567 
15568  // if current_item is array/object, move
15569  // its children to the stack to be processed later
15570  if (current_item.is_array())
15571  {
15572  std::move(current_item.m_value.array->begin(), current_item.m_value.array->end(),
15573  std::back_inserter(stack));
15574 
15575  current_item.m_value.array->clear();
15576  }
15577  else if (current_item.is_object())
15578  {
15579  for (auto&& it : *current_item.m_value.object)
15580  {
15581  stack.push_back(std::move(it.second));
15582  }
15583 
15584  current_item.m_value.object->clear();
15585  }
15586 
15587  // it's now safe that current_item get destructed
15588  // since it doesn't have any children
15589  }
15590 
15591  switch (t)
15592  {
15593  case value_t::object:
15594  {
15595  AllocatorType<object_t> alloc;
15596  std::allocator_traits<decltype(alloc)>::destroy(alloc, object);
15597  std::allocator_traits<decltype(alloc)>::deallocate(alloc, object, 1);
15598  break;
15599  }
15600 
15601  case value_t::array:
15602  {
15603  AllocatorType<array_t> alloc;
15604  std::allocator_traits<decltype(alloc)>::destroy(alloc, array);
15605  std::allocator_traits<decltype(alloc)>::deallocate(alloc, array, 1);
15606  break;
15607  }
15608 
15609  case value_t::string:
15610  {
15611  AllocatorType<string_t> alloc;
15612  std::allocator_traits<decltype(alloc)>::destroy(alloc, string);
15613  std::allocator_traits<decltype(alloc)>::deallocate(alloc, string, 1);
15614  break;
15615  }
15616 
15617  default:
15618  {
15619  break;
15620  }
15621  }
15622  }
15623  };
15624 
15625  /*!
15626  @brief checks the class invariants
15627 
15628  This function asserts the class invariants. It needs to be called at the
15629  end of every constructor to make sure that created objects respect the
15630  invariant. Furthermore, it has to be called each time the type of a JSON
15631  value is changed, because the invariant expresses a relationship between
15632  @a m_type and @a m_value.
15633  */
15634  void assert_invariant() const noexcept
15635  {
15636  assert(m_type != value_t::object or m_value.object != nullptr);
15637  assert(m_type != value_t::array or m_value.array != nullptr);
15638  assert(m_type != value_t::string or m_value.string != nullptr);
15639  }
15640 
15641  public:
15642  //////////////////////////
15643  // JSON parser callback //
15644  //////////////////////////
15645 
15646  /*!
15647  @brief parser event types
15648 
15649  The parser callback distinguishes the following events:
15650  - `object_start`: the parser read `{` and started to process a JSON object
15651  - `key`: the parser read a key of a value in an object
15652  - `object_end`: the parser read `}` and finished processing a JSON object
15653  - `array_start`: the parser read `[` and started to process a JSON array
15654  - `array_end`: the parser read `]` and finished processing a JSON array
15655  - `value`: the parser finished reading a JSON value
15656 
15657  @image html callback_events.png "Example when certain parse events are triggered"
15658 
15659  @sa @ref parser_callback_t for more information and examples
15660  */
15662 
15663  /*!
15664  @brief per-element parser callback type
15665 
15666  With a parser callback function, the result of parsing a JSON text can be
15667  influenced. When passed to @ref parse, it is called on certain events
15668  (passed as @ref parse_event_t via parameter @a event) with a set recursion
15669  depth @a depth and context JSON value @a parsed. The return value of the
15670  callback function is a boolean indicating whether the element that emitted
15671  the callback shall be kept or not.
15672 
15673  We distinguish six scenarios (determined by the event type) in which the
15674  callback function can be called. The following table describes the values
15675  of the parameters @a depth, @a event, and @a parsed.
15676 
15677  parameter @a event | description | parameter @a depth | parameter @a parsed
15678  ------------------ | ----------- | ------------------ | -------------------
15679  parse_event_t::object_start | the parser read `{` and started to process a JSON object | depth of the parent of the JSON object | a JSON value with type discarded
15680  parse_event_t::key | the parser read a key of a value in an object | depth of the currently parsed JSON object | a JSON string containing the key
15681  parse_event_t::object_end | the parser read `}` and finished processing a JSON object | depth of the parent of the JSON object | the parsed JSON object
15682  parse_event_t::array_start | the parser read `[` and started to process a JSON array | depth of the parent of the JSON array | a JSON value with type discarded
15683  parse_event_t::array_end | the parser read `]` and finished processing a JSON array | depth of the parent of the JSON array | the parsed JSON array
15684  parse_event_t::value | the parser finished reading a JSON value | depth of the value | the parsed JSON value
15685 
15686  @image html callback_events.png "Example when certain parse events are triggered"
15687 
15688  Discarding a value (i.e., returning `false`) has different effects
15689  depending on the context in which function was called:
15690 
15691  - Discarded values in structured types are skipped. That is, the parser
15692  will behave as if the discarded value was never read.
15693  - In case a value outside a structured type is skipped, it is replaced
15694  with `null`. This case happens if the top-level element is skipped.
15695 
15696  @param[in] depth the depth of the recursion during parsing
15697 
15698  @param[in] event an event of type parse_event_t indicating the context in
15699  the callback function has been called
15700 
15701  @param[in,out] parsed the current intermediate parse result; note that
15702  writing to this value has no effect for parse_event_t::key events
15703 
15704  @return Whether the JSON value which called the function during parsing
15705  should be kept (`true`) or not (`false`). In the latter case, it is either
15706  skipped completely or replaced by an empty discarded object.
15707 
15708  @sa @ref parse for examples
15709 
15710  @since version 1.0.0
15711  */
15713 
15714  //////////////////
15715  // constructors //
15716  //////////////////
15717 
15718  /// @name constructors and destructors
15719  /// Constructors of class @ref basic_json, copy/move constructor, copy
15720  /// assignment, static functions creating objects, and the destructor.
15721  /// @{
15722 
15723  /*!
15724  @brief create an empty value with a given type
15725 
15726  Create an empty JSON value with a given type. The value will be default
15727  initialized with an empty value which depends on the type:
15728 
15729  Value type | initial value
15730  ----------- | -------------
15731  null | `null`
15732  boolean | `false`
15733  string | `""`
15734  number | `0`
15735  object | `{}`
15736  array | `[]`
15737 
15738  @param[in] v the type of the value to create
15739 
15740  @complexity Constant.
15741 
15742  @exceptionsafety Strong guarantee: if an exception is thrown, there are no
15743  changes to any JSON value.
15744 
15745  @liveexample{The following code shows the constructor for different @ref
15746  value_t values,basic_json__value_t}
15747 
15748  @sa @ref clear() -- restores the postcondition of this constructor
15749 
15750  @since version 1.0.0
15751  */
15753  : m_type(v), m_value(v)
15754  {
15755  assert_invariant();
15756  }
15757 
15758  /*!
15759  @brief create a null object
15760 
15761  Create a `null` JSON value. It either takes a null pointer as parameter
15762  (explicitly creating `null`) or no parameter (implicitly creating `null`).
15763  The passed null pointer itself is not read -- it is only used to choose
15764  the right constructor.
15765 
15766  @complexity Constant.
15767 
15768  @exceptionsafety No-throw guarantee: this constructor never throws
15769  exceptions.
15770 
15771  @liveexample{The following code shows the constructor with and without a
15772  null pointer parameter.,basic_json__nullptr_t}
15773 
15774  @since version 1.0.0
15775  */
15776  basic_json(std::nullptr_t = nullptr) noexcept
15777  : basic_json(value_t::null)
15778  {
15779  assert_invariant();
15780  }
15781 
15782  /*!
15783  @brief create a JSON value
15784 
15785  This is a "catch all" constructor for all compatible JSON types; that is,
15786  types for which a `to_json()` method exists. The constructor forwards the
15787  parameter @a val to that method (to `json_serializer<U>::to_json` method
15788  with `U = uncvref_t<CompatibleType>`, to be exact).
15789 
15790  Template type @a CompatibleType includes, but is not limited to, the
15791  following types:
15792  - **arrays**: @ref array_t and all kinds of compatible containers such as
15793  `std::vector`, `std::deque`, `std::list`, `std::forward_list`,
15794  `std::array`, `std::valarray`, `std::set`, `std::unordered_set`,
15795  `std::multiset`, and `std::unordered_multiset` with a `value_type` from
15796  which a @ref basic_json value can be constructed.
15797  - **objects**: @ref object_t and all kinds of compatible associative
15798  containers such as `std::map`, `std::unordered_map`, `std::multimap`,
15799  and `std::unordered_multimap` with a `key_type` compatible to
15800  @ref string_t and a `value_type` from which a @ref basic_json value can
15801  be constructed.
15802  - **strings**: @ref string_t, string literals, and all compatible string
15803  containers can be used.
15804  - **numbers**: @ref number_integer_t, @ref number_unsigned_t,
15805  @ref number_float_t, and all convertible number types such as `int`,
15806  `size_t`, `int64_t`, `float` or `double` can be used.
15807  - **boolean**: @ref boolean_t / `bool` can be used.
15808 
15809  See the examples below.
15810 
15811  @tparam CompatibleType a type such that:
15812  - @a CompatibleType is not derived from `std::istream`,
15813  - @a CompatibleType is not @ref basic_json (to avoid hijacking copy/move
15814  constructors),
15815  - @a CompatibleType is not a different @ref basic_json type (i.e. with different template arguments)
15816  - @a CompatibleType is not a @ref basic_json nested type (e.g.,
15817  @ref json_pointer, @ref iterator, etc ...)
15818  - @ref @ref json_serializer<U> has a
15819  `to_json(basic_json_t&, CompatibleType&&)` method
15820 
15821  @tparam U = `uncvref_t<CompatibleType>`
15822 
15823  @param[in] val the value to be forwarded to the respective constructor
15824 
15825  @complexity Usually linear in the size of the passed @a val, also
15826  depending on the implementation of the called `to_json()`
15827  method.
15828 
15829  @exceptionsafety Depends on the called constructor. For types directly
15830  supported by the library (i.e., all types for which no `to_json()` function
15831  was provided), strong guarantee holds: if an exception is thrown, there are
15832  no changes to any JSON value.
15833 
15834  @liveexample{The following code shows the constructor with several
15835  compatible types.,basic_json__CompatibleType}
15836 
15837  @since version 2.1.0
15838  */
15839  template <typename CompatibleType,
15840  typename U = detail::uncvref_t<CompatibleType>,
15843  basic_json(CompatibleType && val) noexcept(noexcept(
15844  JSONSerializer<U>::to_json(std::declval<basic_json_t&>(),
15845  std::forward<CompatibleType>(val))))
15846  {
15847  JSONSerializer<U>::to_json(*this, std::forward<CompatibleType>(val));
15848  assert_invariant();
15849  }
15850 
15851  /*!
15852  @brief create a JSON value from an existing one
15853 
15854  This is a constructor for existing @ref basic_json types.
15855  It does not hijack copy/move constructors, since the parameter has different
15856  template arguments than the current ones.
15857 
15858  The constructor tries to convert the internal @ref m_value of the parameter.
15859 
15860  @tparam BasicJsonType a type such that:
15861  - @a BasicJsonType is a @ref basic_json type.
15862  - @a BasicJsonType has different template arguments than @ref basic_json_t.
15863 
15864  @param[in] val the @ref basic_json value to be converted.
15865 
15866  @complexity Usually linear in the size of the passed @a val, also
15867  depending on the implementation of the called `to_json()`
15868  method.
15869 
15870  @exceptionsafety Depends on the called constructor. For types directly
15871  supported by the library (i.e., all types for which no `to_json()` function
15872  was provided), strong guarantee holds: if an exception is thrown, there are
15873  no changes to any JSON value.
15874 
15875  @since version 3.2.0
15876  */
15877  template <typename BasicJsonType,
15880  basic_json(const BasicJsonType& val)
15881  {
15882  using other_boolean_t = typename BasicJsonType::boolean_t;
15883  using other_number_float_t = typename BasicJsonType::number_float_t;
15884  using other_number_integer_t = typename BasicJsonType::number_integer_t;
15885  using other_number_unsigned_t = typename BasicJsonType::number_unsigned_t;
15886  using other_string_t = typename BasicJsonType::string_t;
15887  using other_object_t = typename BasicJsonType::object_t;
15888  using other_array_t = typename BasicJsonType::array_t;
15889 
15890  switch (val.type())
15891  {
15892  case value_t::boolean:
15893  JSONSerializer<other_boolean_t>::to_json(*this, val.template get<other_boolean_t>());
15894  break;
15895  case value_t::number_float:
15896  JSONSerializer<other_number_float_t>::to_json(*this, val.template get<other_number_float_t>());
15897  break;
15898  case value_t::number_integer:
15899  JSONSerializer<other_number_integer_t>::to_json(*this, val.template get<other_number_integer_t>());
15900  break;
15901  case value_t::number_unsigned:
15902  JSONSerializer<other_number_unsigned_t>::to_json(*this, val.template get<other_number_unsigned_t>());
15903  break;
15904  case value_t::string:
15905  JSONSerializer<other_string_t>::to_json(*this, val.template get_ref<const other_string_t&>());
15906  break;
15907  case value_t::object:
15908  JSONSerializer<other_object_t>::to_json(*this, val.template get_ref<const other_object_t&>());
15909  break;
15910  case value_t::array:
15911  JSONSerializer<other_array_t>::to_json(*this, val.template get_ref<const other_array_t&>());
15912  break;
15913  case value_t::null:
15914  *this = nullptr;
15915  break;
15916  case value_t::discarded:
15917  m_type = value_t::discarded;
15918  break;
15919  default: // LCOV_EXCL_LINE
15920  assert(false); // LCOV_EXCL_LINE
15921  }
15922  assert_invariant();
15923  }
15924 
15925  /*!
15926  @brief create a container (array or object) from an initializer list
15927 
15928  Creates a JSON value of type array or object from the passed initializer
15929  list @a init. In case @a type_deduction is `true` (default), the type of
15930  the JSON value to be created is deducted from the initializer list @a init
15931  according to the following rules:
15932 
15933  1. If the list is empty, an empty JSON object value `{}` is created.
15934  2. If the list consists of pairs whose first element is a string, a JSON
15935  object value is created where the first elements of the pairs are
15936  treated as keys and the second elements are as values.
15937  3. In all other cases, an array is created.
15938 
15939  The rules aim to create the best fit between a C++ initializer list and
15940  JSON values. The rationale is as follows:
15941 
15942  1. The empty initializer list is written as `{}` which is exactly an empty
15943  JSON object.
15944  2. C++ has no way of describing mapped types other than to list a list of
15945  pairs. As JSON requires that keys must be of type string, rule 2 is the
15946  weakest constraint one can pose on initializer lists to interpret them
15947  as an object.
15948  3. In all other cases, the initializer list could not be interpreted as
15949  JSON object type, so interpreting it as JSON array type is safe.
15950 
15951  With the rules described above, the following JSON values cannot be
15952  expressed by an initializer list:
15953 
15954  - the empty array (`[]`): use @ref array(initializer_list_t)
15955  with an empty initializer list in this case
15956  - arrays whose elements satisfy rule 2: use @ref
15957  array(initializer_list_t) with the same initializer list
15958  in this case
15959 
15960  @note When used without parentheses around an empty initializer list, @ref
15961  basic_json() is called instead of this function, yielding the JSON null
15962  value.
15963 
15964  @param[in] init initializer list with JSON values
15965 
15966  @param[in] type_deduction internal parameter; when set to `true`, the type
15967  of the JSON value is deducted from the initializer list @a init; when set
15968  to `false`, the type provided via @a manual_type is forced. This mode is
15969  used by the functions @ref array(initializer_list_t) and
15970  @ref object(initializer_list_t).
15971 
15972  @param[in] manual_type internal parameter; when @a type_deduction is set
15973  to `false`, the created JSON value will use the provided type (only @ref
15974  value_t::array and @ref value_t::object are valid); when @a type_deduction
15975  is set to `true`, this parameter has no effect
15976 
15977  @throw type_error.301 if @a type_deduction is `false`, @a manual_type is
15978  `value_t::object`, but @a init contains an element which is not a pair
15979  whose first element is a string. In this case, the constructor could not
15980  create an object. If @a type_deduction would have be `true`, an array
15981  would have been created. See @ref object(initializer_list_t)
15982  for an example.
15983 
15984  @complexity Linear in the size of the initializer list @a init.
15985 
15986  @exceptionsafety Strong guarantee: if an exception is thrown, there are no
15987  changes to any JSON value.
15988 
15989  @liveexample{The example below shows how JSON values are created from
15990  initializer lists.,basic_json__list_init_t}
15991 
15992  @sa @ref array(initializer_list_t) -- create a JSON array
15993  value from an initializer list
15994  @sa @ref object(initializer_list_t) -- create a JSON object
15995  value from an initializer list
15996 
15997  @since version 1.0.0
15998  */
16000  bool type_deduction = true,
16001  value_t manual_type = value_t::array)
16002  {
16003  // check if each element is an array with two elements whose first
16004  // element is a string
16005  bool is_an_object = std::all_of(init.begin(), init.end(),
16006  [](const detail::json_ref<basic_json>& element_ref)
16007  {
16008  return element_ref->is_array() and element_ref->size() == 2 and (*element_ref)[0].is_string();
16009  });
16010 
16011  // adjust type if type deduction is not wanted
16012  if (not type_deduction)
16013  {
16014  // if array is wanted, do not create an object though possible
16015  if (manual_type == value_t::array)
16016  {
16017  is_an_object = false;
16018  }
16019 
16020  // if object is wanted but impossible, throw an exception
16021  if (JSON_HEDLEY_UNLIKELY(manual_type == value_t::object and not is_an_object))
16022  {
16023  JSON_THROW(type_error::create(301, "cannot create object from initializer list"));
16024  }
16025  }
16026 
16027  if (is_an_object)
16028  {
16029  // the initializer list is a list of pairs -> create object
16030  m_type = value_t::object;
16031  m_value = value_t::object;
16032 
16033  std::for_each(init.begin(), init.end(), [this](const detail::json_ref<basic_json>& element_ref)
16034  {
16035  auto element = element_ref.moved_or_copied();
16036  m_value.object->emplace(
16037  std::move(*((*element.m_value.array)[0].m_value.string)),
16038  std::move((*element.m_value.array)[1]));
16039  });
16040  }
16041  else
16042  {
16043  // the initializer list describes an array -> create array
16044  m_type = value_t::array;
16045  m_value.array = create<array_t>(init.begin(), init.end());
16046  }
16047 
16048  assert_invariant();
16049  }
16050 
16051  /*!
16052  @brief explicitly create an array from an initializer list
16053 
16054  Creates a JSON array value from a given initializer list. That is, given a
16055  list of values `a, b, c`, creates the JSON value `[a, b, c]`. If the
16056  initializer list is empty, the empty array `[]` is created.
16057 
16058  @note This function is only needed to express two edge cases that cannot
16059  be realized with the initializer list constructor (@ref
16060  basic_json(initializer_list_t, bool, value_t)). These cases
16061  are:
16062  1. creating an array whose elements are all pairs whose first element is a
16063  string -- in this case, the initializer list constructor would create an
16064  object, taking the first elements as keys
16065  2. creating an empty array -- passing the empty initializer list to the
16066  initializer list constructor yields an empty object
16067 
16068  @param[in] init initializer list with JSON values to create an array from
16069  (optional)
16070 
16071  @return JSON array value
16072 
16073  @complexity Linear in the size of @a init.
16074 
16075  @exceptionsafety Strong guarantee: if an exception is thrown, there are no
16076  changes to any JSON value.
16077 
16078  @liveexample{The following code shows an example for the `array`
16079  function.,array}
16080 
16081  @sa @ref basic_json(initializer_list_t, bool, value_t) --
16082  create a JSON value from an initializer list
16083  @sa @ref object(initializer_list_t) -- create a JSON object
16084  value from an initializer list
16085 
16086  @since version 1.0.0
16087  */
16090  {
16091  return basic_json(init, false, value_t::array);
16092  }
16093 
16094  /*!
16095  @brief explicitly create an object from an initializer list
16096 
16097  Creates a JSON object value from a given initializer list. The initializer
16098  lists elements must be pairs, and their first elements must be strings. If
16099  the initializer list is empty, the empty object `{}` is created.
16100 
16101  @note This function is only added for symmetry reasons. In contrast to the
16102  related function @ref array(initializer_list_t), there are
16103  no cases which can only be expressed by this function. That is, any
16104  initializer list @a init can also be passed to the initializer list
16105  constructor @ref basic_json(initializer_list_t, bool, value_t).
16106 
16107  @param[in] init initializer list to create an object from (optional)
16108 
16109  @return JSON object value
16110 
16111  @throw type_error.301 if @a init is not a list of pairs whose first
16112  elements are strings. In this case, no object can be created. When such a
16113  value is passed to @ref basic_json(initializer_list_t, bool, value_t),
16114  an array would have been created from the passed initializer list @a init.
16115  See example below.
16116 
16117  @complexity Linear in the size of @a init.
16118 
16119  @exceptionsafety Strong guarantee: if an exception is thrown, there are no
16120  changes to any JSON value.
16121 
16122  @liveexample{The following code shows an example for the `object`
16123  function.,object}
16124 
16125  @sa @ref basic_json(initializer_list_t, bool, value_t) --
16126  create a JSON value from an initializer list
16127  @sa @ref array(initializer_list_t) -- create a JSON array
16128  value from an initializer list
16129 
16130  @since version 1.0.0
16131  */
16134  {
16135  return basic_json(init, false, value_t::object);
16136  }
16137 
16138  /*!
16139  @brief construct an array with count copies of given value
16140 
16141  Constructs a JSON array value by creating @a cnt copies of a passed value.
16142  In case @a cnt is `0`, an empty array is created.
16143 
16144  @param[in] cnt the number of JSON copies of @a val to create
16145  @param[in] val the JSON value to copy
16146 
16147  @post `std::distance(begin(),end()) == cnt` holds.
16148 
16149  @complexity Linear in @a cnt.
16150 
16151  @exceptionsafety Strong guarantee: if an exception is thrown, there are no
16152  changes to any JSON value.
16153 
16154  @liveexample{The following code shows examples for the @ref
16155  basic_json(size_type\, const basic_json&)
16156  constructor.,basic_json__size_type_basic_json}
16157 
16158  @since version 1.0.0
16159  */
16161  : m_type(value_t::array)
16162  {
16163  m_value.array = create<array_t>(cnt, val);
16164  assert_invariant();
16165  }
16166 
16167  /*!
16168  @brief construct a JSON container given an iterator range
16169 
16170  Constructs the JSON value with the contents of the range `[first, last)`.
16171  The semantics depends on the different types a JSON value can have:
16172  - In case of a null type, invalid_iterator.206 is thrown.
16173  - In case of other primitive types (number, boolean, or string), @a first
16174  must be `begin()` and @a last must be `end()`. In this case, the value is
16175  copied. Otherwise, invalid_iterator.204 is thrown.
16176  - In case of structured types (array, object), the constructor behaves as
16177  similar versions for `std::vector` or `std::map`; that is, a JSON array
16178  or object is constructed from the values in the range.
16179 
16180  @tparam InputIT an input iterator type (@ref iterator or @ref
16181  const_iterator)
16182 
16183  @param[in] first begin of the range to copy from (included)
16184  @param[in] last end of the range to copy from (excluded)
16185 
16186  @pre Iterators @a first and @a last must be initialized. **This
16187  precondition is enforced with an assertion (see warning).** If
16188  assertions are switched off, a violation of this precondition yields
16189  undefined behavior.
16190 
16191  @pre Range `[first, last)` is valid. Usually, this precondition cannot be
16192  checked efficiently. Only certain edge cases are detected; see the
16193  description of the exceptions below. A violation of this precondition
16194  yields undefined behavior.
16195 
16196  @warning A precondition is enforced with a runtime assertion that will
16197  result in calling `std::abort` if this precondition is not met.
16198  Assertions can be disabled by defining `NDEBUG` at compile time.
16199  See https://en.cppreference.com/w/cpp/error/assert for more
16200  information.
16201 
16202  @throw invalid_iterator.201 if iterators @a first and @a last are not
16203  compatible (i.e., do not belong to the same JSON value). In this case,
16204  the range `[first, last)` is undefined.
16205  @throw invalid_iterator.204 if iterators @a first and @a last belong to a
16206  primitive type (number, boolean, or string), but @a first does not point
16207  to the first element any more. In this case, the range `[first, last)` is
16208  undefined. See example code below.
16209  @throw invalid_iterator.206 if iterators @a first and @a last belong to a
16210  null value. In this case, the range `[first, last)` is undefined.
16211 
16212  @complexity Linear in distance between @a first and @a last.
16213 
16214  @exceptionsafety Strong guarantee: if an exception is thrown, there are no
16215  changes to any JSON value.
16216 
16217  @liveexample{The example below shows several ways to create JSON values by
16218  specifying a subrange with iterators.,basic_json__InputIt_InputIt}
16219 
16220  @since version 1.0.0
16221  */
16222  template<class InputIT, typename std::enable_if<
16225  basic_json(InputIT first, InputIT last)
16226  {
16227  assert(first.m_object != nullptr);
16228  assert(last.m_object != nullptr);
16229 
16230  // make sure iterator fits the current value
16231  if (JSON_HEDLEY_UNLIKELY(first.m_object != last.m_object))
16232  {
16233  JSON_THROW(invalid_iterator::create(201, "iterators are not compatible"));
16234  }
16235 
16236  // copy type from first iterator
16237  m_type = first.m_object->m_type;
16238 
16239  // check if iterator range is complete for primitive values
16240  switch (m_type)
16241  {
16242  case value_t::boolean:
16243  case value_t::number_float:
16244  case value_t::number_integer:
16245  case value_t::number_unsigned:
16246  case value_t::string:
16247  {
16248  if (JSON_HEDLEY_UNLIKELY(not first.m_it.primitive_iterator.is_begin()
16249  or not last.m_it.primitive_iterator.is_end()))
16250  {
16251  JSON_THROW(invalid_iterator::create(204, "iterators out of range"));
16252  }
16253  break;
16254  }
16255 
16256  default:
16257  break;
16258  }
16259 
16260  switch (m_type)
16261  {
16262  case value_t::number_integer:
16263  {
16264  m_value.number_integer = first.m_object->m_value.number_integer;
16265  break;
16266  }
16267 
16268  case value_t::number_unsigned:
16269  {
16270  m_value.number_unsigned = first.m_object->m_value.number_unsigned;
16271  break;
16272  }
16273 
16274  case value_t::number_float:
16275  {
16276  m_value.number_float = first.m_object->m_value.number_float;
16277  break;
16278  }
16279 
16280  case value_t::boolean:
16281  {
16282  m_value.boolean = first.m_object->m_value.boolean;
16283  break;
16284  }
16285 
16286  case value_t::string:
16287  {
16288  m_value = *first.m_object->m_value.string;
16289  break;
16290  }
16291 
16292  case value_t::object:
16293  {
16294  m_value.object = create<object_t>(first.m_it.object_iterator,
16295  last.m_it.object_iterator);
16296  break;
16297  }
16298 
16299  case value_t::array:
16300  {
16301  m_value.array = create<array_t>(first.m_it.array_iterator,
16302  last.m_it.array_iterator);
16303  break;
16304  }
16305 
16306  default:
16307  JSON_THROW(invalid_iterator::create(206, "cannot construct with iterators from " +
16308  std::string(first.m_object->type_name())));
16309  }
16310 
16311  assert_invariant();
16312  }
16313 
16314 
16315  ///////////////////////////////////////
16316  // other constructors and destructor //
16317  ///////////////////////////////////////
16318 
16319  /// @private
16321  : basic_json(ref.moved_or_copied())
16322  {}
16323 
16324  /*!
16325  @brief copy constructor
16326 
16327  Creates a copy of a given JSON value.
16328 
16329  @param[in] other the JSON value to copy
16330 
16331  @post `*this == other`
16332 
16333  @complexity Linear in the size of @a other.
16334 
16335  @exceptionsafety Strong guarantee: if an exception is thrown, there are no
16336  changes to any JSON value.
16337 
16338  @requirement This function helps `basic_json` satisfying the
16339  [Container](https://en.cppreference.com/w/cpp/named_req/Container)
16340  requirements:
16341  - The complexity is linear.
16342  - As postcondition, it holds: `other == basic_json(other)`.
16343 
16344  @liveexample{The following code shows an example for the copy
16345  constructor.,basic_json__basic_json}
16346 
16347  @since version 1.0.0
16348  */
16349  basic_json(const basic_json& other)
16350  : m_type(other.m_type)
16351  {
16352  // check of passed value is valid
16353  other.assert_invariant();
16354 
16355  switch (m_type)
16356  {
16357  case value_t::object:
16358  {
16359  m_value = *other.m_value.object;
16360  break;
16361  }
16362 
16363  case value_t::array:
16364  {
16365  m_value = *other.m_value.array;
16366  break;
16367  }
16368 
16369  case value_t::string:
16370  {
16371  m_value = *other.m_value.string;
16372  break;
16373  }
16374 
16375  case value_t::boolean:
16376  {
16377  m_value = other.m_value.boolean;
16378  break;
16379  }
16380 
16381  case value_t::number_integer:
16382  {
16383  m_value = other.m_value.number_integer;
16384  break;
16385  }
16386 
16387  case value_t::number_unsigned:
16388  {
16389  m_value = other.m_value.number_unsigned;
16390  break;
16391  }
16392 
16393  case value_t::number_float:
16394  {
16395  m_value = other.m_value.number_float;
16396  break;
16397  }
16398 
16399  default:
16400  break;
16401  }
16402 
16403  assert_invariant();
16404  }
16405 
16406  /*!
16407  @brief move constructor
16408 
16409  Move constructor. Constructs a JSON value with the contents of the given
16410  value @a other using move semantics. It "steals" the resources from @a
16411  other and leaves it as JSON null value.
16412 
16413  @param[in,out] other value to move to this object
16414 
16415  @post `*this` has the same value as @a other before the call.
16416  @post @a other is a JSON null value.
16417 
16418  @complexity Constant.
16419 
16420  @exceptionsafety No-throw guarantee: this constructor never throws
16421  exceptions.
16422 
16423  @requirement This function helps `basic_json` satisfying the
16424  [MoveConstructible](https://en.cppreference.com/w/cpp/named_req/MoveConstructible)
16425  requirements.
16426 
16427  @liveexample{The code below shows the move constructor explicitly called
16428  via std::move.,basic_json__moveconstructor}
16429 
16430  @since version 1.0.0
16431  */
16432  basic_json(basic_json&& other) noexcept
16433  : m_type(std::move(other.m_type)),
16434  m_value(std::move(other.m_value))
16435  {
16436  // check that passed value is valid
16437  other.assert_invariant();
16438 
16439  // invalidate payload
16440  other.m_type = value_t::null;
16441  other.m_value = {};
16442 
16443  assert_invariant();
16444  }
16445 
16446  /*!
16447  @brief copy assignment
16448 
16449  Copy assignment operator. Copies a JSON value via the "copy and swap"
16450  strategy: It is expressed in terms of the copy constructor, destructor,
16451  and the `swap()` member function.
16452 
16453  @param[in] other value to copy from
16454 
16455  @complexity Linear.
16456 
16457  @requirement This function helps `basic_json` satisfying the
16458  [Container](https://en.cppreference.com/w/cpp/named_req/Container)
16459  requirements:
16460  - The complexity is linear.
16461 
16462  @liveexample{The code below shows and example for the copy assignment. It
16463  creates a copy of value `a` which is then swapped with `b`. Finally\, the
16464  copy of `a` (which is the null value after the swap) is
16465  destroyed.,basic_json__copyassignment}
16466 
16467  @since version 1.0.0
16468  */
16469  basic_json& operator=(basic_json other) noexcept (
16474  )
16475  {
16476  // check that passed value is valid
16477  other.assert_invariant();
16478 
16479  using std::swap;
16480  swap(m_type, other.m_type);
16481  swap(m_value, other.m_value);
16482 
16483  assert_invariant();
16484  return *this;
16485  }
16486 
16487  /*!
16488  @brief destructor
16489 
16490  Destroys the JSON value and frees all allocated memory.
16491 
16492  @complexity Linear.
16493 
16494  @requirement This function helps `basic_json` satisfying the
16495  [Container](https://en.cppreference.com/w/cpp/named_req/Container)
16496  requirements:
16497  - The complexity is linear.
16498  - All stored elements are destroyed and all memory is freed.
16499 
16500  @since version 1.0.0
16501  */
16502  ~basic_json() noexcept
16503  {
16504  assert_invariant();
16505  m_value.destroy(m_type);
16506  }
16507 
16508  /// @}
16509 
16510  public:
16511  ///////////////////////
16512  // object inspection //
16513  ///////////////////////
16514 
16515  /// @name object inspection
16516  /// Functions to inspect the type of a JSON value.
16517  /// @{
16518 
16519  /*!
16520  @brief serialization
16521 
16522  Serialization function for JSON values. The function tries to mimic
16523  Python's `json.dumps()` function, and currently supports its @a indent
16524  and @a ensure_ascii parameters.
16525 
16526  @param[in] indent If indent is nonnegative, then array elements and object
16527  members will be pretty-printed with that indent level. An indent level of
16528  `0` will only insert newlines. `-1` (the default) selects the most compact
16529  representation.
16530  @param[in] indent_char The character to use for indentation if @a indent is
16531  greater than `0`. The default is ` ` (space).
16532  @param[in] ensure_ascii If @a ensure_ascii is true, all non-ASCII characters
16533  in the output are escaped with `\uXXXX` sequences, and the result consists
16534  of ASCII characters only.
16535  @param[in] error_handler how to react on decoding errors; there are three
16536  possible values: `strict` (throws and exception in case a decoding error
16537  occurs; default), `replace` (replace invalid UTF-8 sequences with U+FFFD),
16538  and `ignore` (ignore invalid UTF-8 sequences during serialization).
16539 
16540  @return string containing the serialization of the JSON value
16541 
16542  @throw type_error.316 if a string stored inside the JSON value is not
16543  UTF-8 encoded
16544 
16545  @complexity Linear.
16546 
16547  @exceptionsafety Strong guarantee: if an exception is thrown, there are no
16548  changes in the JSON value.
16549 
16550  @liveexample{The following example shows the effect of different @a indent\,
16551  @a indent_char\, and @a ensure_ascii parameters to the result of the
16552  serialization.,dump}
16553 
16554  @see https://docs.python.org/2/library/json.html#json.dump
16555 
16556  @since version 1.0.0; indentation character @a indent_char, option
16557  @a ensure_ascii and exceptions added in version 3.0.0; error
16558  handlers added in version 3.4.0.
16559  */
16560  string_t dump(const int indent = -1,
16561  const char indent_char = ' ',
16562  const bool ensure_ascii = false,
16563  const error_handler_t error_handler = error_handler_t::strict) const
16564  {
16565  string_t result;
16566  serializer s(detail::output_adapter<char, string_t>(result), indent_char, error_handler);
16567 
16568  if (indent >= 0)
16569  {
16570  s.dump(*this, true, ensure_ascii, static_cast<unsigned int>(indent));
16571  }
16572  else
16573  {
16574  s.dump(*this, false, ensure_ascii, 0);
16575  }
16576 
16577  return result;
16578  }
16579 
16580  /*!
16581  @brief return the type of the JSON value (explicit)
16582 
16583  Return the type of the JSON value as a value from the @ref value_t
16584  enumeration.
16585 
16586  @return the type of the JSON value
16587  Value type | return value
16588  ------------------------- | -------------------------
16589  null | value_t::null
16590  boolean | value_t::boolean
16591  string | value_t::string
16592  number (integer) | value_t::number_integer
16593  number (unsigned integer) | value_t::number_unsigned
16594  number (floating-point) | value_t::number_float
16595  object | value_t::object
16596  array | value_t::array
16597  discarded | value_t::discarded
16598 
16599  @complexity Constant.
16600 
16601  @exceptionsafety No-throw guarantee: this member function never throws
16602  exceptions.
16603 
16604  @liveexample{The following code exemplifies `type()` for all JSON
16605  types.,type}
16606 
16607  @sa @ref operator value_t() -- return the type of the JSON value (implicit)
16608  @sa @ref type_name() -- return the type as string
16609 
16610  @since version 1.0.0
16611  */
16612  constexpr value_t type() const noexcept
16613  {
16614  return m_type;
16615  }
16616 
16617  /*!
16618  @brief return whether type is primitive
16619 
16620  This function returns true if and only if the JSON type is primitive
16621  (string, number, boolean, or null).
16622 
16623  @return `true` if type is primitive (string, number, boolean, or null),
16624  `false` otherwise.
16625 
16626  @complexity Constant.
16627 
16628  @exceptionsafety No-throw guarantee: this member function never throws
16629  exceptions.
16630 
16631  @liveexample{The following code exemplifies `is_primitive()` for all JSON
16632  types.,is_primitive}
16633 
16634  @sa @ref is_structured() -- returns whether JSON value is structured
16635  @sa @ref is_null() -- returns whether JSON value is `null`
16636  @sa @ref is_string() -- returns whether JSON value is a string
16637  @sa @ref is_boolean() -- returns whether JSON value is a boolean
16638  @sa @ref is_number() -- returns whether JSON value is a number
16639 
16640  @since version 1.0.0
16641  */
16642  constexpr bool is_primitive() const noexcept
16643  {
16644  return is_null() or is_string() or is_boolean() or is_number();
16645  }
16646 
16647  /*!
16648  @brief return whether type is structured
16649 
16650  This function returns true if and only if the JSON type is structured
16651  (array or object).
16652 
16653  @return `true` if type is structured (array or object), `false` otherwise.
16654 
16655  @complexity Constant.
16656 
16657  @exceptionsafety No-throw guarantee: this member function never throws
16658  exceptions.
16659 
16660  @liveexample{The following code exemplifies `is_structured()` for all JSON
16661  types.,is_structured}
16662 
16663  @sa @ref is_primitive() -- returns whether value is primitive
16664  @sa @ref is_array() -- returns whether value is an array
16665  @sa @ref is_object() -- returns whether value is an object
16666 
16667  @since version 1.0.0
16668  */
16669  constexpr bool is_structured() const noexcept
16670  {
16671  return is_array() or is_object();
16672  }
16673 
16674  /*!
16675  @brief return whether value is null
16676 
16677  This function returns true if and only if the JSON value is null.
16678 
16679  @return `true` if type is null, `false` otherwise.
16680 
16681  @complexity Constant.
16682 
16683  @exceptionsafety No-throw guarantee: this member function never throws
16684  exceptions.
16685 
16686  @liveexample{The following code exemplifies `is_null()` for all JSON
16687  types.,is_null}
16688 
16689  @since version 1.0.0
16690  */
16691  constexpr bool is_null() const noexcept
16692  {
16693  return m_type == value_t::null;
16694  }
16695 
16696  /*!
16697  @brief return whether value is a boolean
16698 
16699  This function returns true if and only if the JSON value is a boolean.
16700 
16701  @return `true` if type is boolean, `false` otherwise.
16702 
16703  @complexity Constant.
16704 
16705  @exceptionsafety No-throw guarantee: this member function never throws
16706  exceptions.
16707 
16708  @liveexample{The following code exemplifies `is_boolean()` for all JSON
16709  types.,is_boolean}
16710 
16711  @since version 1.0.0
16712  */
16713  constexpr bool is_boolean() const noexcept
16714  {
16715  return m_type == value_t::boolean;
16716  }
16717 
16718  /*!
16719  @brief return whether value is a number
16720 
16721  This function returns true if and only if the JSON value is a number. This
16722  includes both integer (signed and unsigned) and floating-point values.
16723 
16724  @return `true` if type is number (regardless whether integer, unsigned
16725  integer or floating-type), `false` otherwise.
16726 
16727  @complexity Constant.
16728 
16729  @exceptionsafety No-throw guarantee: this member function never throws
16730  exceptions.
16731 
16732  @liveexample{The following code exemplifies `is_number()` for all JSON
16733  types.,is_number}
16734 
16735  @sa @ref is_number_integer() -- check if value is an integer or unsigned
16736  integer number
16737  @sa @ref is_number_unsigned() -- check if value is an unsigned integer
16738  number
16739  @sa @ref is_number_float() -- check if value is a floating-point number
16740 
16741  @since version 1.0.0
16742  */
16743  constexpr bool is_number() const noexcept
16744  {
16745  return is_number_integer() or is_number_float();
16746  }
16747 
16748  /*!
16749  @brief return whether value is an integer number
16750 
16751  This function returns true if and only if the JSON value is a signed or
16752  unsigned integer number. This excludes floating-point values.
16753 
16754  @return `true` if type is an integer or unsigned integer number, `false`
16755  otherwise.
16756 
16757  @complexity Constant.
16758 
16759  @exceptionsafety No-throw guarantee: this member function never throws
16760  exceptions.
16761 
16762  @liveexample{The following code exemplifies `is_number_integer()` for all
16763  JSON types.,is_number_integer}
16764 
16765  @sa @ref is_number() -- check if value is a number
16766  @sa @ref is_number_unsigned() -- check if value is an unsigned integer
16767  number
16768  @sa @ref is_number_float() -- check if value is a floating-point number
16769 
16770  @since version 1.0.0
16771  */
16772  constexpr bool is_number_integer() const noexcept
16773  {
16774  return m_type == value_t::number_integer or m_type == value_t::number_unsigned;
16775  }
16776 
16777  /*!
16778  @brief return whether value is an unsigned integer number
16779 
16780  This function returns true if and only if the JSON value is an unsigned
16781  integer number. This excludes floating-point and signed integer values.
16782 
16783  @return `true` if type is an unsigned integer number, `false` otherwise.
16784 
16785  @complexity Constant.
16786 
16787  @exceptionsafety No-throw guarantee: this member function never throws
16788  exceptions.
16789 
16790  @liveexample{The following code exemplifies `is_number_unsigned()` for all
16791  JSON types.,is_number_unsigned}
16792 
16793  @sa @ref is_number() -- check if value is a number
16794  @sa @ref is_number_integer() -- check if value is an integer or unsigned
16795  integer number
16796  @sa @ref is_number_float() -- check if value is a floating-point number
16797 
16798  @since version 2.0.0
16799  */
16800  constexpr bool is_number_unsigned() const noexcept
16801  {
16802  return m_type == value_t::number_unsigned;
16803  }
16804 
16805  /*!
16806  @brief return whether value is a floating-point number
16807 
16808  This function returns true if and only if the JSON value is a
16809  floating-point number. This excludes signed and unsigned integer values.
16810 
16811  @return `true` if type is a floating-point number, `false` otherwise.
16812 
16813  @complexity Constant.
16814 
16815  @exceptionsafety No-throw guarantee: this member function never throws
16816  exceptions.
16817 
16818  @liveexample{The following code exemplifies `is_number_float()` for all
16819  JSON types.,is_number_float}
16820 
16821  @sa @ref is_number() -- check if value is number
16822  @sa @ref is_number_integer() -- check if value is an integer number
16823  @sa @ref is_number_unsigned() -- check if value is an unsigned integer
16824  number
16825 
16826  @since version 1.0.0
16827  */
16828  constexpr bool is_number_float() const noexcept
16829  {
16830  return m_type == value_t::number_float;
16831  }
16832 
16833  /*!
16834  @brief return whether value is an object
16835 
16836  This function returns true if and only if the JSON value is an object.
16837 
16838  @return `true` if type is object, `false` otherwise.
16839 
16840  @complexity Constant.
16841 
16842  @exceptionsafety No-throw guarantee: this member function never throws
16843  exceptions.
16844 
16845  @liveexample{The following code exemplifies `is_object()` for all JSON
16846  types.,is_object}
16847 
16848  @since version 1.0.0
16849  */
16850  constexpr bool is_object() const noexcept
16851  {
16852  return m_type == value_t::object;
16853  }
16854 
16855  /*!
16856  @brief return whether value is an array
16857 
16858  This function returns true if and only if the JSON value is an array.
16859 
16860  @return `true` if type is array, `false` otherwise.
16861 
16862  @complexity Constant.
16863 
16864  @exceptionsafety No-throw guarantee: this member function never throws
16865  exceptions.
16866 
16867  @liveexample{The following code exemplifies `is_array()` for all JSON
16868  types.,is_array}
16869 
16870  @since version 1.0.0
16871  */
16872  constexpr bool is_array() const noexcept
16873  {
16874  return m_type == value_t::array;
16875  }
16876 
16877  /*!
16878  @brief return whether value is a string
16879 
16880  This function returns true if and only if the JSON value is a string.
16881 
16882  @return `true` if type is string, `false` otherwise.
16883 
16884  @complexity Constant.
16885 
16886  @exceptionsafety No-throw guarantee: this member function never throws
16887  exceptions.
16888 
16889  @liveexample{The following code exemplifies `is_string()` for all JSON
16890  types.,is_string}
16891 
16892  @since version 1.0.0
16893  */
16894  constexpr bool is_string() const noexcept
16895  {
16896  return m_type == value_t::string;
16897  }
16898 
16899  /*!
16900  @brief return whether value is discarded
16901 
16902  This function returns true if and only if the JSON value was discarded
16903  during parsing with a callback function (see @ref parser_callback_t).
16904 
16905  @note This function will always be `false` for JSON values after parsing.
16906  That is, discarded values can only occur during parsing, but will be
16907  removed when inside a structured value or replaced by null in other cases.
16908 
16909  @return `true` if type is discarded, `false` otherwise.
16910 
16911  @complexity Constant.
16912 
16913  @exceptionsafety No-throw guarantee: this member function never throws
16914  exceptions.
16915 
16916  @liveexample{The following code exemplifies `is_discarded()` for all JSON
16917  types.,is_discarded}
16918 
16919  @since version 1.0.0
16920  */
16921  constexpr bool is_discarded() const noexcept
16922  {
16923  return m_type == value_t::discarded;
16924  }
16925 
16926  /*!
16927  @brief return the type of the JSON value (implicit)
16928 
16929  Implicitly return the type of the JSON value as a value from the @ref
16930  value_t enumeration.
16931 
16932  @return the type of the JSON value
16933 
16934  @complexity Constant.
16935 
16936  @exceptionsafety No-throw guarantee: this member function never throws
16937  exceptions.
16938 
16939  @liveexample{The following code exemplifies the @ref value_t operator for
16940  all JSON types.,operator__value_t}
16941 
16942  @sa @ref type() -- return the type of the JSON value (explicit)
16943  @sa @ref type_name() -- return the type as string
16944 
16945  @since version 1.0.0
16946  */
16947  constexpr operator value_t() const noexcept
16948  {
16949  return m_type;
16950  }
16951 
16952  /// @}
16953 
16954  private:
16955  //////////////////
16956  // value access //
16957  //////////////////
16958 
16959  /// get a boolean (explicit)
16960  boolean_t get_impl(boolean_t* /*unused*/) const
16961  {
16962  if (JSON_HEDLEY_LIKELY(is_boolean()))
16963  {
16964  return m_value.boolean;
16965  }
16966 
16967  JSON_THROW(type_error::create(302, "type must be boolean, but is " + std::string(type_name())));
16968  }
16969 
16970  /// get a pointer to the value (object)
16971  object_t* get_impl_ptr(object_t* /*unused*/) noexcept
16972  {
16973  return is_object() ? m_value.object : nullptr;
16974  }
16975 
16976  /// get a pointer to the value (object)
16977  constexpr const object_t* get_impl_ptr(const object_t* /*unused*/) const noexcept
16978  {
16979  return is_object() ? m_value.object : nullptr;
16980  }
16981 
16982  /// get a pointer to the value (array)
16983  array_t* get_impl_ptr(array_t* /*unused*/) noexcept
16984  {
16985  return is_array() ? m_value.array : nullptr;
16986  }
16987 
16988  /// get a pointer to the value (array)
16989  constexpr const array_t* get_impl_ptr(const array_t* /*unused*/) const noexcept
16990  {
16991  return is_array() ? m_value.array : nullptr;
16992  }
16993 
16994  /// get a pointer to the value (string)
16995  string_t* get_impl_ptr(string_t* /*unused*/) noexcept
16996  {
16997  return is_string() ? m_value.string : nullptr;
16998  }
16999 
17000  /// get a pointer to the value (string)
17001  constexpr const string_t* get_impl_ptr(const string_t* /*unused*/) const noexcept
17002  {
17003  return is_string() ? m_value.string : nullptr;
17004  }
17005 
17006  /// get a pointer to the value (boolean)
17007  boolean_t* get_impl_ptr(boolean_t* /*unused*/) noexcept
17008  {
17009  return is_boolean() ? &m_value.boolean : nullptr;
17010  }
17011 
17012  /// get a pointer to the value (boolean)
17013  constexpr const boolean_t* get_impl_ptr(const boolean_t* /*unused*/) const noexcept
17014  {
17015  return is_boolean() ? &m_value.boolean : nullptr;
17016  }
17017 
17018  /// get a pointer to the value (integer number)
17020  {
17021  return is_number_integer() ? &m_value.number_integer : nullptr;
17022  }
17023 
17024  /// get a pointer to the value (integer number)
17025  constexpr const number_integer_t* get_impl_ptr(const number_integer_t* /*unused*/) const noexcept
17026  {
17027  return is_number_integer() ? &m_value.number_integer : nullptr;
17028  }
17029 
17030  /// get a pointer to the value (unsigned number)
17032  {
17033  return is_number_unsigned() ? &m_value.number_unsigned : nullptr;
17034  }
17035 
17036  /// get a pointer to the value (unsigned number)
17037  constexpr const number_unsigned_t* get_impl_ptr(const number_unsigned_t* /*unused*/) const noexcept
17038  {
17039  return is_number_unsigned() ? &m_value.number_unsigned : nullptr;
17040  }
17041 
17042  /// get a pointer to the value (floating-point number)
17044  {
17045  return is_number_float() ? &m_value.number_float : nullptr;
17046  }
17047 
17048  /// get a pointer to the value (floating-point number)
17049  constexpr const number_float_t* get_impl_ptr(const number_float_t* /*unused*/) const noexcept
17050  {
17051  return is_number_float() ? &m_value.number_float : nullptr;
17052  }
17053 
17054  /*!
17055  @brief helper function to implement get_ref()
17056 
17057  This function helps to implement get_ref() without code duplication for
17058  const and non-const overloads
17059 
17060  @tparam ThisType will be deduced as `basic_json` or `const basic_json`
17061 
17062  @throw type_error.303 if ReferenceType does not match underlying value
17063  type of the current JSON
17064  */
17065  template<typename ReferenceType, typename ThisType>
17066  static ReferenceType get_ref_impl(ThisType& obj)
17067  {
17068  // delegate the call to get_ptr<>()
17069  auto ptr = obj.template get_ptr<typename std::add_pointer<ReferenceType>::type>();
17070 
17071  if (JSON_HEDLEY_LIKELY(ptr != nullptr))
17072  {
17073  return *ptr;
17074  }
17075 
17076  JSON_THROW(type_error::create(303, "incompatible ReferenceType for get_ref, actual type is " + std::string(obj.type_name())));
17077  }
17078 
17079  public:
17080  /// @name value access
17081  /// Direct access to the stored value of a JSON value.
17082  /// @{
17083 
17084  /*!
17085  @brief get special-case overload
17086 
17087  This overloads avoids a lot of template boilerplate, it can be seen as the
17088  identity method
17089 
17090  @tparam BasicJsonType == @ref basic_json
17091 
17092  @return a copy of *this
17093 
17094  @complexity Constant.
17095 
17096  @since version 2.1.0
17097  */
17098  template<typename BasicJsonType, detail::enable_if_t<
17100  int> = 0>
17101  basic_json get() const
17102  {
17103  return *this;
17104  }
17105 
17106  /*!
17107  @brief get special-case overload
17108 
17109  This overloads converts the current @ref basic_json in a different
17110  @ref basic_json type
17111 
17112  @tparam BasicJsonType == @ref basic_json
17113 
17114  @return a copy of *this, converted into @tparam BasicJsonType
17115 
17116  @complexity Depending on the implementation of the called `from_json()`
17117  method.
17118 
17119  @since version 3.2.0
17120  */
17121  template<typename BasicJsonType, detail::enable_if_t<
17124  BasicJsonType get() const
17125  {
17126  return *this;
17127  }
17128 
17129  /*!
17130  @brief get a value (explicit)
17131 
17132  Explicit type conversion between the JSON value and a compatible value
17133  which is [CopyConstructible](https://en.cppreference.com/w/cpp/named_req/CopyConstructible)
17134  and [DefaultConstructible](https://en.cppreference.com/w/cpp/named_req/DefaultConstructible).
17135  The value is converted by calling the @ref json_serializer<ValueType>
17136  `from_json()` method.
17137 
17138  The function is equivalent to executing
17139  @code {.cpp}
17140  ValueType ret;
17141  JSONSerializer<ValueType>::from_json(*this, ret);
17142  return ret;
17143  @endcode
17144 
17145  This overloads is chosen if:
17146  - @a ValueType is not @ref basic_json,
17147  - @ref json_serializer<ValueType> has a `from_json()` method of the form
17148  `void from_json(const basic_json&, ValueType&)`, and
17149  - @ref json_serializer<ValueType> does not have a `from_json()` method of
17150  the form `ValueType from_json(const basic_json&)`
17151 
17152  @tparam ValueTypeCV the provided value type
17153  @tparam ValueType the returned value type
17154 
17155  @return copy of the JSON value, converted to @a ValueType
17156 
17157  @throw what @ref json_serializer<ValueType> `from_json()` method throws
17158 
17159  @liveexample{The example below shows several conversions from JSON values
17160  to other types. There a few things to note: (1) Floating-point numbers can
17161  be converted to integers\, (2) A JSON array can be converted to a standard
17162  `std::vector<short>`\, (3) A JSON object can be converted to C++
17163  associative containers such as `std::unordered_map<std::string\,
17164  json>`.,get__ValueType_const}
17165 
17166  @since version 2.1.0
17167  */
17168  template<typename ValueTypeCV, typename ValueType = detail::uncvref_t<ValueTypeCV>,
17169  detail::enable_if_t <
17170  not detail::is_basic_json<ValueType>::value and
17171  detail::has_from_json<basic_json_t, ValueType>::value and
17172  not detail::has_non_default_from_json<basic_json_t, ValueType>::value,
17173  int> = 0>
17174  ValueType get() const noexcept(noexcept(
17175  JSONSerializer<ValueType>::from_json(std::declval<const basic_json_t&>(), std::declval<ValueType&>())))
17176  {
17177  // we cannot static_assert on ValueTypeCV being non-const, because
17178  // there is support for get<const basic_json_t>(), which is why we
17179  // still need the uncvref
17180  static_assert(not std::is_reference<ValueTypeCV>::value,
17181  "get() cannot be used with reference types, you might want to use get_ref()");
17183  "types must be DefaultConstructible when used with get()");
17184 
17185  ValueType ret;
17187  return ret;
17188  }
17189 
17190  /*!
17191  @brief get a value (explicit); special case
17192 
17193  Explicit type conversion between the JSON value and a compatible value
17194  which is **not** [CopyConstructible](https://en.cppreference.com/w/cpp/named_req/CopyConstructible)
17195  and **not** [DefaultConstructible](https://en.cppreference.com/w/cpp/named_req/DefaultConstructible).
17196  The value is converted by calling the @ref json_serializer<ValueType>
17197  `from_json()` method.
17198 
17199  The function is equivalent to executing
17200  @code {.cpp}
17201  return JSONSerializer<ValueTypeCV>::from_json(*this);
17202  @endcode
17203 
17204  This overloads is chosen if:
17205  - @a ValueType is not @ref basic_json and
17206  - @ref json_serializer<ValueType> has a `from_json()` method of the form
17207  `ValueType from_json(const basic_json&)`
17208 
17209  @note If @ref json_serializer<ValueType> has both overloads of
17210  `from_json()`, this one is chosen.
17211 
17212  @tparam ValueTypeCV the provided value type
17213  @tparam ValueType the returned value type
17214 
17215  @return copy of the JSON value, converted to @a ValueType
17216 
17217  @throw what @ref json_serializer<ValueType> `from_json()` method throws
17218 
17219  @since version 2.1.0
17220  */
17221  template<typename ValueTypeCV, typename ValueType = detail::uncvref_t<ValueTypeCV>,
17222  detail::enable_if_t<not std::is_same<basic_json_t, ValueType>::value and
17223  detail::has_non_default_from_json<basic_json_t, ValueType>::value,
17224  int> = 0>
17225  ValueType get() const noexcept(noexcept(
17226  JSONSerializer<ValueType>::from_json(std::declval<const basic_json_t&>())))
17227  {
17228  static_assert(not std::is_reference<ValueTypeCV>::value,
17229  "get() cannot be used with reference types, you might want to use get_ref()");
17231  }
17232 
17233  /*!
17234  @brief get a value (explicit)
17235 
17236  Explicit type conversion between the JSON value and a compatible value.
17237  The value is filled into the input parameter by calling the @ref json_serializer<ValueType>
17238  `from_json()` method.
17239 
17240  The function is equivalent to executing
17241  @code {.cpp}
17242  ValueType v;
17243  JSONSerializer<ValueType>::from_json(*this, v);
17244  @endcode
17245 
17246  This overloads is chosen if:
17247  - @a ValueType is not @ref basic_json,
17248  - @ref json_serializer<ValueType> has a `from_json()` method of the form
17249  `void from_json(const basic_json&, ValueType&)`, and
17250 
17251  @tparam ValueType the input parameter type.
17252 
17253  @return the input parameter, allowing chaining calls.
17254 
17255  @throw what @ref json_serializer<ValueType> `from_json()` method throws
17256 
17257  @liveexample{The example below shows several conversions from JSON values
17258  to other types. There a few things to note: (1) Floating-point numbers can
17259  be converted to integers\, (2) A JSON array can be converted to a standard
17260  `std::vector<short>`\, (3) A JSON object can be converted to C++
17261  associative containers such as `std::unordered_map<std::string\,
17262  json>`.,get_to}
17263 
17264  @since version 3.3.0
17265  */
17266  template<typename ValueType,
17270  int> = 0>
17271  ValueType & get_to(ValueType& v) const noexcept(noexcept(
17272  JSONSerializer<ValueType>::from_json(std::declval<const basic_json_t&>(), v)))
17273  {
17275  return v;
17276  }
17277 
17278  template <
17279  typename T, std::size_t N,
17280  typename Array = T (&)[N],
17283  Array get_to(T (&v)[N]) const
17284  noexcept(noexcept(JSONSerializer<Array>::from_json(
17285  std::declval<const basic_json_t&>(), v)))
17286  {
17288  return v;
17289  }
17290 
17291 
17292  /*!
17293  @brief get a pointer value (implicit)
17294 
17295  Implicit pointer access to the internally stored JSON value. No copies are
17296  made.
17297 
17298  @warning Writing data to the pointee of the result yields an undefined
17299  state.
17300 
17301  @tparam PointerType pointer type; must be a pointer to @ref array_t, @ref
17302  object_t, @ref string_t, @ref boolean_t, @ref number_integer_t,
17303  @ref number_unsigned_t, or @ref number_float_t. Enforced by a static
17304  assertion.
17305 
17306  @return pointer to the internally stored JSON value if the requested
17307  pointer type @a PointerType fits to the JSON value; `nullptr` otherwise
17308 
17309  @complexity Constant.
17310 
17311  @liveexample{The example below shows how pointers to internal values of a
17312  JSON value can be requested. Note that no type conversions are made and a
17313  `nullptr` is returned if the value and the requested pointer type does not
17314  match.,get_ptr}
17315 
17316  @since version 1.0.0
17317  */
17318  template<typename PointerType, typename std::enable_if<
17320  auto get_ptr() noexcept -> decltype(std::declval<basic_json_t&>().get_impl_ptr(std::declval<PointerType>()))
17321  {
17322  // delegate the call to get_impl_ptr<>()
17323  return get_impl_ptr(static_cast<PointerType>(nullptr));
17324  }
17325 
17326  /*!
17327  @brief get a pointer value (implicit)
17328  @copydoc get_ptr()
17329  */
17330  template<typename PointerType, typename std::enable_if<
17333  constexpr auto get_ptr() const noexcept -> decltype(std::declval<const basic_json_t&>().get_impl_ptr(std::declval<PointerType>()))
17334  {
17335  // delegate the call to get_impl_ptr<>() const
17336  return get_impl_ptr(static_cast<PointerType>(nullptr));
17337  }
17338 
17339  /*!
17340  @brief get a pointer value (explicit)
17341 
17342  Explicit pointer access to the internally stored JSON value. No copies are
17343  made.
17344 
17345  @warning The pointer becomes invalid if the underlying JSON object
17346  changes.
17347 
17348  @tparam PointerType pointer type; must be a pointer to @ref array_t, @ref
17349  object_t, @ref string_t, @ref boolean_t, @ref number_integer_t,
17350  @ref number_unsigned_t, or @ref number_float_t.
17351 
17352  @return pointer to the internally stored JSON value if the requested
17353  pointer type @a PointerType fits to the JSON value; `nullptr` otherwise
17354 
17355  @complexity Constant.
17356 
17357  @liveexample{The example below shows how pointers to internal values of a
17358  JSON value can be requested. Note that no type conversions are made and a
17359  `nullptr` is returned if the value and the requested pointer type does not
17360  match.,get__PointerType}
17361 
17362  @sa @ref get_ptr() for explicit pointer-member access
17363 
17364  @since version 1.0.0
17365  */
17366  template<typename PointerType, typename std::enable_if<
17368  auto get() noexcept -> decltype(std::declval<basic_json_t&>().template get_ptr<PointerType>())
17369  {
17370  // delegate the call to get_ptr
17371  return get_ptr<PointerType>();
17372  }
17373 
17374  /*!
17375  @brief get a pointer value (explicit)
17376  @copydoc get()
17377  */
17378  template<typename PointerType, typename std::enable_if<
17380  constexpr auto get() const noexcept -> decltype(std::declval<const basic_json_t&>().template get_ptr<PointerType>())
17381  {
17382  // delegate the call to get_ptr
17383  return get_ptr<PointerType>();
17384  }
17385 
17386  /*!
17387  @brief get a reference value (implicit)
17388 
17389  Implicit reference access to the internally stored JSON value. No copies
17390  are made.
17391 
17392  @warning Writing data to the referee of the result yields an undefined
17393  state.
17394 
17395  @tparam ReferenceType reference type; must be a reference to @ref array_t,
17396  @ref object_t, @ref string_t, @ref boolean_t, @ref number_integer_t, or
17397  @ref number_float_t. Enforced by static assertion.
17398 
17399  @return reference to the internally stored JSON value if the requested
17400  reference type @a ReferenceType fits to the JSON value; throws
17401  type_error.303 otherwise
17402 
17403  @throw type_error.303 in case passed type @a ReferenceType is incompatible
17404  with the stored JSON value; see example below
17405 
17406  @complexity Constant.
17407 
17408  @liveexample{The example shows several calls to `get_ref()`.,get_ref}
17409 
17410  @since version 1.1.0
17411  */
17412  template<typename ReferenceType, typename std::enable_if<
17414  ReferenceType get_ref()
17415  {
17416  // delegate call to get_ref_impl
17417  return get_ref_impl<ReferenceType>(*this);
17418  }
17419 
17420  /*!
17421  @brief get a reference value (implicit)
17422  @copydoc get_ref()
17423  */
17424  template<typename ReferenceType, typename std::enable_if<
17427  ReferenceType get_ref() const
17428  {
17429  // delegate call to get_ref_impl
17430  return get_ref_impl<ReferenceType>(*this);
17431  }
17432 
17433  /*!
17434  @brief get a value (implicit)
17435 
17436  Implicit type conversion between the JSON value and a compatible value.
17437  The call is realized by calling @ref get() const.
17438 
17439  @tparam ValueType non-pointer type compatible to the JSON value, for
17440  instance `int` for JSON integer numbers, `bool` for JSON booleans, or
17441  `std::vector` types for JSON arrays. The character type of @ref string_t
17442  as well as an initializer list of this type is excluded to avoid
17443  ambiguities as these types implicitly convert to `std::string`.
17444 
17445  @return copy of the JSON value, converted to type @a ValueType
17446 
17447  @throw type_error.302 in case passed type @a ValueType is incompatible
17448  to the JSON value type (e.g., the JSON value is of type boolean, but a
17449  string is requested); see example below
17450 
17451  @complexity Linear in the size of the JSON value.
17452 
17453  @liveexample{The example below shows several conversions from JSON values
17454  to other types. There a few things to note: (1) Floating-point numbers can
17455  be converted to integers\, (2) A JSON array can be converted to a standard
17456  `std::vector<short>`\, (3) A JSON object can be converted to C++
17457  associative containers such as `std::unordered_map<std::string\,
17458  json>`.,operator__ValueType}
17459 
17460  @since version 1.0.0
17461  */
17462  template < typename ValueType, typename std::enable_if <
17464  not std::is_same<ValueType, detail::json_ref<basic_json>>::value and
17467 
17468 #ifndef _MSC_VER // fix for issue #167 operator<< ambiguity under VS2015
17469  and not std::is_same<ValueType, std::initializer_list<typename string_t::value_type>>::value
17470 #if defined(JSON_HAS_CPP_17) && (defined(__GNUC__) || (defined(_MSC_VER) and _MSC_VER <= 1914))
17472 #endif
17473 #endif
17475  , int >::type = 0 >
17476  operator ValueType() const
17477  {
17478  // delegate the call to get<>() const
17479  return get<ValueType>();
17480  }
17481 
17482  /// @}
17483 
17484 
17485  ////////////////////
17486  // element access //
17487  ////////////////////
17488 
17489  /// @name element access
17490  /// Access to the JSON value.
17491  /// @{
17492 
17493  /*!
17494  @brief access specified array element with bounds checking
17495 
17496  Returns a reference to the element at specified location @a idx, with
17497  bounds checking.
17498 
17499  @param[in] idx index of the element to access
17500 
17501  @return reference to the element at index @a idx
17502 
17503  @throw type_error.304 if the JSON value is not an array; in this case,
17504  calling `at` with an index makes no sense. See example below.
17505  @throw out_of_range.401 if the index @a idx is out of range of the array;
17506  that is, `idx >= size()`. See example below.
17507 
17508  @exceptionsafety Strong guarantee: if an exception is thrown, there are no
17509  changes in the JSON value.
17510 
17511  @complexity Constant.
17512 
17513  @since version 1.0.0
17514 
17515  @liveexample{The example below shows how array elements can be read and
17516  written using `at()`. It also demonstrates the different exceptions that
17517  can be thrown.,at__size_type}
17518  */
17520  {
17521  // at only works for arrays
17522  if (JSON_HEDLEY_LIKELY(is_array()))
17523  {
17524  JSON_TRY
17525  {
17526  return m_value.array->at(idx);
17527  }
17528  JSON_CATCH (std::out_of_range&)
17529  {
17530  // create better exception explanation
17531  JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range"));
17532  }
17533  }
17534  else
17535  {
17536  JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name())));
17537  }
17538  }
17539 
17540  /*!
17541  @brief access specified array element with bounds checking
17542 
17543  Returns a const reference to the element at specified location @a idx,
17544  with bounds checking.
17545 
17546  @param[in] idx index of the element to access
17547 
17548  @return const reference to the element at index @a idx
17549 
17550  @throw type_error.304 if the JSON value is not an array; in this case,
17551  calling `at` with an index makes no sense. See example below.
17552  @throw out_of_range.401 if the index @a idx is out of range of the array;
17553  that is, `idx >= size()`. See example below.
17554 
17555  @exceptionsafety Strong guarantee: if an exception is thrown, there are no
17556  changes in the JSON value.
17557 
17558  @complexity Constant.
17559 
17560  @since version 1.0.0
17561 
17562  @liveexample{The example below shows how array elements can be read using
17563  `at()`. It also demonstrates the different exceptions that can be thrown.,
17564  at__size_type_const}
17565  */
17567  {
17568  // at only works for arrays
17569  if (JSON_HEDLEY_LIKELY(is_array()))
17570  {
17571  JSON_TRY
17572  {
17573  return m_value.array->at(idx);
17574  }
17575  JSON_CATCH (std::out_of_range&)
17576  {
17577  // create better exception explanation
17578  JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range"));
17579  }
17580  }
17581  else
17582  {
17583  JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name())));
17584  }
17585  }
17586 
17587  /*!
17588  @brief access specified object element with bounds checking
17589 
17590  Returns a reference to the element at with specified key @a key, with
17591  bounds checking.
17592 
17593  @param[in] key key of the element to access
17594 
17595  @return reference to the element at key @a key
17596 
17597  @throw type_error.304 if the JSON value is not an object; in this case,
17598  calling `at` with a key makes no sense. See example below.
17599  @throw out_of_range.403 if the key @a key is is not stored in the object;
17600  that is, `find(key) == end()`. See example below.
17601 
17602  @exceptionsafety Strong guarantee: if an exception is thrown, there are no
17603  changes in the JSON value.
17604 
17605  @complexity Logarithmic in the size of the container.
17606 
17607  @sa @ref operator[](const typename object_t::key_type&) for unchecked
17608  access by reference
17609  @sa @ref value() for access by value with a default value
17610 
17611  @since version 1.0.0
17612 
17613  @liveexample{The example below shows how object elements can be read and
17614  written using `at()`. It also demonstrates the different exceptions that
17615  can be thrown.,at__object_t_key_type}
17616  */
17617  reference at(const typename object_t::key_type& key)
17618  {
17619  // at only works for objects
17620  if (JSON_HEDLEY_LIKELY(is_object()))
17621  {
17622  JSON_TRY
17623  {
17624  return m_value.object->at(key);
17625  }
17626  JSON_CATCH (std::out_of_range&)
17627  {
17628  // create better exception explanation
17629  JSON_THROW(out_of_range::create(403, "key '" + key + "' not found"));
17630  }
17631  }
17632  else
17633  {
17634  JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name())));
17635  }
17636  }
17637 
17638  /*!
17639  @brief access specified object element with bounds checking
17640 
17641  Returns a const reference to the element at with specified key @a key,
17642  with bounds checking.
17643 
17644  @param[in] key key of the element to access
17645 
17646  @return const reference to the element at key @a key
17647 
17648  @throw type_error.304 if the JSON value is not an object; in this case,
17649  calling `at` with a key makes no sense. See example below.
17650  @throw out_of_range.403 if the key @a key is is not stored in the object;
17651  that is, `find(key) == end()`. See example below.
17652 
17653  @exceptionsafety Strong guarantee: if an exception is thrown, there are no
17654  changes in the JSON value.
17655 
17656  @complexity Logarithmic in the size of the container.
17657 
17658  @sa @ref operator[](const typename object_t::key_type&) for unchecked
17659  access by reference
17660  @sa @ref value() for access by value with a default value
17661 
17662  @since version 1.0.0
17663 
17664  @liveexample{The example below shows how object elements can be read using
17665  `at()`. It also demonstrates the different exceptions that can be thrown.,
17666  at__object_t_key_type_const}
17667  */
17668  const_reference at(const typename object_t::key_type& key) const
17669  {
17670  // at only works for objects
17671  if (JSON_HEDLEY_LIKELY(is_object()))
17672  {
17673  JSON_TRY
17674  {
17675  return m_value.object->at(key);
17676  }
17677  JSON_CATCH (std::out_of_range&)
17678  {
17679  // create better exception explanation
17680  JSON_THROW(out_of_range::create(403, "key '" + key + "' not found"));
17681  }
17682  }
17683  else
17684  {
17685  JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name())));
17686  }
17687  }
17688 
17689  /*!
17690  @brief access specified array element
17691 
17692  Returns a reference to the element at specified location @a idx.
17693 
17694  @note If @a idx is beyond the range of the array (i.e., `idx >= size()`),
17695  then the array is silently filled up with `null` values to make `idx` a
17696  valid reference to the last stored element.
17697 
17698  @param[in] idx index of the element to access
17699 
17700  @return reference to the element at index @a idx
17701 
17702  @throw type_error.305 if the JSON value is not an array or null; in that
17703  cases, using the [] operator with an index makes no sense.
17704 
17705  @complexity Constant if @a idx is in the range of the array. Otherwise
17706  linear in `idx - size()`.
17707 
17708  @liveexample{The example below shows how array elements can be read and
17709  written using `[]` operator. Note the addition of `null`
17710  values.,operatorarray__size_type}
17711 
17712  @since version 1.0.0
17713  */
17715  {
17716  // implicitly convert null value to an empty array
17717  if (is_null())
17718  {
17719  m_type = value_t::array;
17720  m_value.array = create<array_t>();
17721  assert_invariant();
17722  }
17723 
17724  // operator[] only works for arrays
17725  if (JSON_HEDLEY_LIKELY(is_array()))
17726  {
17727  // fill up array with null values if given idx is outside range
17728  if (idx >= m_value.array->size())
17729  {
17730  m_value.array->insert(m_value.array->end(),
17731  idx - m_value.array->size() + 1,
17732  basic_json());
17733  }
17734 
17735  return m_value.array->operator[](idx);
17736  }
17737 
17738  JSON_THROW(type_error::create(305, "cannot use operator[] with a numeric argument with " + std::string(type_name())));
17739  }
17740 
17741  /*!
17742  @brief access specified array element
17743 
17744  Returns a const reference to the element at specified location @a idx.
17745 
17746  @param[in] idx index of the element to access
17747 
17748  @return const reference to the element at index @a idx
17749 
17750  @throw type_error.305 if the JSON value is not an array; in that case,
17751  using the [] operator with an index makes no sense.
17752 
17753  @complexity Constant.
17754 
17755  @liveexample{The example below shows how array elements can be read using
17756  the `[]` operator.,operatorarray__size_type_const}
17757 
17758  @since version 1.0.0
17759  */
17761  {
17762  // const operator[] only works for arrays
17763  if (JSON_HEDLEY_LIKELY(is_array()))
17764  {
17765  return m_value.array->operator[](idx);
17766  }
17767 
17768  JSON_THROW(type_error::create(305, "cannot use operator[] with a numeric argument with " + std::string(type_name())));
17769  }
17770 
17771  /*!
17772  @brief access specified object element
17773 
17774  Returns a reference to the element at with specified key @a key.
17775 
17776  @note If @a key is not found in the object, then it is silently added to
17777  the object and filled with a `null` value to make `key` a valid reference.
17778  In case the value was `null` before, it is converted to an object.
17779 
17780  @param[in] key key of the element to access
17781 
17782  @return reference to the element at key @a key
17783 
17784  @throw type_error.305 if the JSON value is not an object or null; in that
17785  cases, using the [] operator with a key makes no sense.
17786 
17787  @complexity Logarithmic in the size of the container.
17788 
17789  @liveexample{The example below shows how object elements can be read and
17790  written using the `[]` operator.,operatorarray__key_type}
17791 
17792  @sa @ref at(const typename object_t::key_type&) for access by reference
17793  with range checking
17794  @sa @ref value() for access by value with a default value
17795 
17796  @since version 1.0.0
17797  */
17798  reference operator[](const typename object_t::key_type& key)
17799  {
17800  // implicitly convert null value to an empty object
17801  if (is_null())
17802  {
17803  m_type = value_t::object;
17804  m_value.object = create<object_t>();
17805  assert_invariant();
17806  }
17807 
17808  // operator[] only works for objects
17809  if (JSON_HEDLEY_LIKELY(is_object()))
17810  {
17811  return m_value.object->operator[](key);
17812  }
17813 
17814  JSON_THROW(type_error::create(305, "cannot use operator[] with a string argument with " + std::string(type_name())));
17815  }
17816 
17817  /*!
17818  @brief read-only access specified object element
17819 
17820  Returns a const reference to the element at with specified key @a key. No
17821  bounds checking is performed.
17822 
17823  @warning If the element with key @a key does not exist, the behavior is
17824  undefined.
17825 
17826  @param[in] key key of the element to access
17827 
17828  @return const reference to the element at key @a key
17829 
17830  @pre The element with key @a key must exist. **This precondition is
17831  enforced with an assertion.**
17832 
17833  @throw type_error.305 if the JSON value is not an object; in that case,
17834  using the [] operator with a key makes no sense.
17835 
17836  @complexity Logarithmic in the size of the container.
17837 
17838  @liveexample{The example below shows how object elements can be read using
17839  the `[]` operator.,operatorarray__key_type_const}
17840 
17841  @sa @ref at(const typename object_t::key_type&) for access by reference
17842  with range checking
17843  @sa @ref value() for access by value with a default value
17844 
17845  @since version 1.0.0
17846  */
17847  const_reference operator[](const typename object_t::key_type& key) const
17848  {
17849  // const operator[] only works for objects
17850  if (JSON_HEDLEY_LIKELY(is_object()))
17851  {
17852  assert(m_value.object->find(key) != m_value.object->end());
17853  return m_value.object->find(key)->second;
17854  }
17855 
17856  JSON_THROW(type_error::create(305, "cannot use operator[] with a string argument with " + std::string(type_name())));
17857  }
17858 
17859  /*!
17860  @brief access specified object element
17861 
17862  Returns a reference to the element at with specified key @a key.
17863 
17864  @note If @a key is not found in the object, then it is silently added to
17865  the object and filled with a `null` value to make `key` a valid reference.
17866  In case the value was `null` before, it is converted to an object.
17867 
17868  @param[in] key key of the element to access
17869 
17870  @return reference to the element at key @a key
17871 
17872  @throw type_error.305 if the JSON value is not an object or null; in that
17873  cases, using the [] operator with a key makes no sense.
17874 
17875  @complexity Logarithmic in the size of the container.
17876 
17877  @liveexample{The example below shows how object elements can be read and
17878  written using the `[]` operator.,operatorarray__key_type}
17879 
17880  @sa @ref at(const typename object_t::key_type&) for access by reference
17881  with range checking
17882  @sa @ref value() for access by value with a default value
17883 
17884  @since version 1.1.0
17885  */
17886  template<typename T>
17888  reference operator[](T* key)
17889  {
17890  // implicitly convert null to object
17891  if (is_null())
17892  {
17893  m_type = value_t::object;
17894  m_value = value_t::object;
17895  assert_invariant();
17896  }
17897 
17898  // at only works for objects
17899  if (JSON_HEDLEY_LIKELY(is_object()))
17900  {
17901  return m_value.object->operator[](key);
17902  }
17903 
17904  JSON_THROW(type_error::create(305, "cannot use operator[] with a string argument with " + std::string(type_name())));
17905  }
17906 
17907  /*!
17908  @brief read-only access specified object element
17909 
17910  Returns a const reference to the element at with specified key @a key. No
17911  bounds checking is performed.
17912 
17913  @warning If the element with key @a key does not exist, the behavior is
17914  undefined.
17915 
17916  @param[in] key key of the element to access
17917 
17918  @return const reference to the element at key @a key
17919 
17920  @pre The element with key @a key must exist. **This precondition is
17921  enforced with an assertion.**
17922 
17923  @throw type_error.305 if the JSON value is not an object; in that case,
17924  using the [] operator with a key makes no sense.
17925 
17926  @complexity Logarithmic in the size of the container.
17927 
17928  @liveexample{The example below shows how object elements can be read using
17929  the `[]` operator.,operatorarray__key_type_const}
17930 
17931  @sa @ref at(const typename object_t::key_type&) for access by reference
17932  with range checking
17933  @sa @ref value() for access by value with a default value
17934 
17935  @since version 1.1.0
17936  */
17937  template<typename T>
17939  const_reference operator[](T* key) const
17940  {
17941  // at only works for objects
17942  if (JSON_HEDLEY_LIKELY(is_object()))
17943  {
17944  assert(m_value.object->find(key) != m_value.object->end());
17945  return m_value.object->find(key)->second;
17946  }
17947 
17948  JSON_THROW(type_error::create(305, "cannot use operator[] with a string argument with " + std::string(type_name())));
17949  }
17950 
17951  /*!
17952  @brief access specified object element with default value
17953 
17954  Returns either a copy of an object's element at the specified key @a key
17955  or a given default value if no element with key @a key exists.
17956 
17957  The function is basically equivalent to executing
17958  @code {.cpp}
17959  try {
17960  return at(key);
17961  } catch(out_of_range) {
17962  return default_value;
17963  }
17964  @endcode
17965 
17966  @note Unlike @ref at(const typename object_t::key_type&), this function
17967  does not throw if the given key @a key was not found.
17968 
17969  @note Unlike @ref operator[](const typename object_t::key_type& key), this
17970  function does not implicitly add an element to the position defined by @a
17971  key. This function is furthermore also applicable to const objects.
17972 
17973  @param[in] key key of the element to access
17974  @param[in] default_value the value to return if @a key is not found
17975 
17976  @tparam ValueType type compatible to JSON values, for instance `int` for
17977  JSON integer numbers, `bool` for JSON booleans, or `std::vector` types for
17978  JSON arrays. Note the type of the expected value at @a key and the default
17979  value @a default_value must be compatible.
17980 
17981  @return copy of the element at key @a key or @a default_value if @a key
17982  is not found
17983 
17984  @throw type_error.302 if @a default_value does not match the type of the
17985  value at @a key
17986  @throw type_error.306 if the JSON value is not an object; in that case,
17987  using `value()` with a key makes no sense.
17988 
17989  @complexity Logarithmic in the size of the container.
17990 
17991  @liveexample{The example below shows how object elements can be queried
17992  with a default value.,basic_json__value}
17993 
17994  @sa @ref at(const typename object_t::key_type&) for access by reference
17995  with range checking
17996  @sa @ref operator[](const typename object_t::key_type&) for unchecked
17997  access by reference
17998 
17999  @since version 1.0.0
18000  */
18001  template<class ValueType, typename std::enable_if<
18003  ValueType value(const typename object_t::key_type& key, const ValueType& default_value) const
18004  {
18005  // at only works for objects
18006  if (JSON_HEDLEY_LIKELY(is_object()))
18007  {
18008  // if key is found, return value and given default value otherwise
18009  const auto it = find(key);
18010  if (it != end())
18011  {
18012  return *it;
18013  }
18014 
18015  return default_value;
18016  }
18017 
18018  JSON_THROW(type_error::create(306, "cannot use value() with " + std::string(type_name())));
18019  }
18020 
18021  /*!
18022  @brief overload for a default value of type const char*
18023  @copydoc basic_json::value(const typename object_t::key_type&, const ValueType&) const
18024  */
18025  string_t value(const typename object_t::key_type& key, const char* default_value) const
18026  {
18027  return value(key, string_t(default_value));
18028  }
18029 
18030  /*!
18031  @brief access specified object element via JSON Pointer with default value
18032 
18033  Returns either a copy of an object's element at the specified key @a key
18034  or a given default value if no element with key @a key exists.
18035 
18036  The function is basically equivalent to executing
18037  @code {.cpp}
18038  try {
18039  return at(ptr);
18040  } catch(out_of_range) {
18041  return default_value;
18042  }
18043  @endcode
18044 
18045  @note Unlike @ref at(const json_pointer&), this function does not throw
18046  if the given key @a key was not found.
18047 
18048  @param[in] ptr a JSON pointer to the element to access
18049  @param[in] default_value the value to return if @a ptr found no value
18050 
18051  @tparam ValueType type compatible to JSON values, for instance `int` for
18052  JSON integer numbers, `bool` for JSON booleans, or `std::vector` types for
18053  JSON arrays. Note the type of the expected value at @a key and the default
18054  value @a default_value must be compatible.
18055 
18056  @return copy of the element at key @a key or @a default_value if @a key
18057  is not found
18058 
18059  @throw type_error.302 if @a default_value does not match the type of the
18060  value at @a ptr
18061  @throw type_error.306 if the JSON value is not an object; in that case,
18062  using `value()` with a key makes no sense.
18063 
18064  @complexity Logarithmic in the size of the container.
18065 
18066  @liveexample{The example below shows how object elements can be queried
18067  with a default value.,basic_json__value_ptr}
18068 
18069  @sa @ref operator[](const json_pointer&) for unchecked access by reference
18070 
18071  @since version 2.0.2
18072  */
18073  template<class ValueType, typename std::enable_if<
18075  ValueType value(const json_pointer& ptr, const ValueType& default_value) const
18076  {
18077  // at only works for objects
18078  if (JSON_HEDLEY_LIKELY(is_object()))
18079  {
18080  // if pointer resolves a value, return it or use default value
18081  JSON_TRY
18082  {
18083  return ptr.get_checked(this);
18084  }
18086  {
18087  return default_value;
18088  }
18089  }
18090 
18091  JSON_THROW(type_error::create(306, "cannot use value() with " + std::string(type_name())));
18092  }
18093 
18094  /*!
18095  @brief overload for a default value of type const char*
18096  @copydoc basic_json::value(const json_pointer&, ValueType) const
18097  */
18099  string_t value(const json_pointer& ptr, const char* default_value) const
18100  {
18101  return value(ptr, string_t(default_value));
18102  }
18103 
18104  /*!
18105  @brief access the first element
18106 
18107  Returns a reference to the first element in the container. For a JSON
18108  container `c`, the expression `c.front()` is equivalent to `*c.begin()`.
18109 
18110  @return In case of a structured type (array or object), a reference to the
18111  first element is returned. In case of number, string, or boolean values, a
18112  reference to the value is returned.
18113 
18114  @complexity Constant.
18115 
18116  @pre The JSON value must not be `null` (would throw `std::out_of_range`)
18117  or an empty array or object (undefined behavior, **guarded by
18118  assertions**).
18119  @post The JSON value remains unchanged.
18120 
18121  @throw invalid_iterator.214 when called on `null` value
18122 
18123  @liveexample{The following code shows an example for `front()`.,front}
18124 
18125  @sa @ref back() -- access the last element
18126 
18127  @since version 1.0.0
18128  */
18130  {
18131  return *begin();
18132  }
18133 
18134  /*!
18135  @copydoc basic_json::front()
18136  */
18138  {
18139  return *cbegin();
18140  }
18141 
18142  /*!
18143  @brief access the last element
18144 
18145  Returns a reference to the last element in the container. For a JSON
18146  container `c`, the expression `c.back()` is equivalent to
18147  @code {.cpp}
18148  auto tmp = c.end();
18149  --tmp;
18150  return *tmp;
18151  @endcode
18152 
18153  @return In case of a structured type (array or object), a reference to the
18154  last element is returned. In case of number, string, or boolean values, a
18155  reference to the value is returned.
18156 
18157  @complexity Constant.
18158 
18159  @pre The JSON value must not be `null` (would throw `std::out_of_range`)
18160  or an empty array or object (undefined behavior, **guarded by
18161  assertions**).
18162  @post The JSON value remains unchanged.
18163 
18164  @throw invalid_iterator.214 when called on a `null` value. See example
18165  below.
18166 
18167  @liveexample{The following code shows an example for `back()`.,back}
18168 
18169  @sa @ref front() -- access the first element
18170 
18171  @since version 1.0.0
18172  */
18174  {
18175  auto tmp = end();
18176  --tmp;
18177  return *tmp;
18178  }
18179 
18180  /*!
18181  @copydoc basic_json::back()
18182  */
18184  {
18185  auto tmp = cend();
18186  --tmp;
18187  return *tmp;
18188  }
18189 
18190  /*!
18191  @brief remove element given an iterator
18192 
18193  Removes the element specified by iterator @a pos. The iterator @a pos must
18194  be valid and dereferenceable. Thus the `end()` iterator (which is valid,
18195  but is not dereferenceable) cannot be used as a value for @a pos.
18196 
18197  If called on a primitive type other than `null`, the resulting JSON value
18198  will be `null`.
18199 
18200  @param[in] pos iterator to the element to remove
18201  @return Iterator following the last removed element. If the iterator @a
18202  pos refers to the last element, the `end()` iterator is returned.
18203 
18204  @tparam IteratorType an @ref iterator or @ref const_iterator
18205 
18206  @post Invalidates iterators and references at or after the point of the
18207  erase, including the `end()` iterator.
18208 
18209  @throw type_error.307 if called on a `null` value; example: `"cannot use
18210  erase() with null"`
18211  @throw invalid_iterator.202 if called on an iterator which does not belong
18212  to the current JSON value; example: `"iterator does not fit current
18213  value"`
18214  @throw invalid_iterator.205 if called on a primitive type with invalid
18215  iterator (i.e., any iterator which is not `begin()`); example: `"iterator
18216  out of range"`
18217 
18218  @complexity The complexity depends on the type:
18219  - objects: amortized constant
18220  - arrays: linear in distance between @a pos and the end of the container
18221  - strings: linear in the length of the string
18222  - other types: constant
18223 
18224  @liveexample{The example shows the result of `erase()` for different JSON
18225  types.,erase__IteratorType}
18226 
18227  @sa @ref erase(IteratorType, IteratorType) -- removes the elements in
18228  the given range
18229  @sa @ref erase(const typename object_t::key_type&) -- removes the element
18230  from an object at the given key
18231  @sa @ref erase(const size_type) -- removes the element from an array at
18232  the given index
18233 
18234  @since version 1.0.0
18235  */
18236  template<class IteratorType, typename std::enable_if<
18239  = 0>
18240  IteratorType erase(IteratorType pos)
18241  {
18242  // make sure iterator fits the current value
18243  if (JSON_HEDLEY_UNLIKELY(this != pos.m_object))
18244  {
18245  JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
18246  }
18247 
18248  IteratorType result = end();
18249 
18250  switch (m_type)
18251  {
18252  case value_t::boolean:
18253  case value_t::number_float:
18254  case value_t::number_integer:
18255  case value_t::number_unsigned:
18256  case value_t::string:
18257  {
18258  if (JSON_HEDLEY_UNLIKELY(not pos.m_it.primitive_iterator.is_begin()))
18259  {
18260  JSON_THROW(invalid_iterator::create(205, "iterator out of range"));
18261  }
18262 
18263  if (is_string())
18264  {
18265  AllocatorType<string_t> alloc;
18266  std::allocator_traits<decltype(alloc)>::destroy(alloc, m_value.string);
18267  std::allocator_traits<decltype(alloc)>::deallocate(alloc, m_value.string, 1);
18268  m_value.string = nullptr;
18269  }
18270 
18271  m_type = value_t::null;
18272  assert_invariant();
18273  break;
18274  }
18275 
18276  case value_t::object:
18277  {
18278  result.m_it.object_iterator = m_value.object->erase(pos.m_it.object_iterator);
18279  break;
18280  }
18281 
18282  case value_t::array:
18283  {
18284  result.m_it.array_iterator = m_value.array->erase(pos.m_it.array_iterator);
18285  break;
18286  }
18287 
18288  default:
18289  JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name())));
18290  }
18291 
18292  return result;
18293  }
18294 
18295  /*!
18296  @brief remove elements given an iterator range
18297 
18298  Removes the element specified by the range `[first; last)`. The iterator
18299  @a first does not need to be dereferenceable if `first == last`: erasing
18300  an empty range is a no-op.
18301 
18302  If called on a primitive type other than `null`, the resulting JSON value
18303  will be `null`.
18304 
18305  @param[in] first iterator to the beginning of the range to remove
18306  @param[in] last iterator past the end of the range to remove
18307  @return Iterator following the last removed element. If the iterator @a
18308  second refers to the last element, the `end()` iterator is returned.
18309 
18310  @tparam IteratorType an @ref iterator or @ref const_iterator
18311 
18312  @post Invalidates iterators and references at or after the point of the
18313  erase, including the `end()` iterator.
18314 
18315  @throw type_error.307 if called on a `null` value; example: `"cannot use
18316  erase() with null"`
18317  @throw invalid_iterator.203 if called on iterators which does not belong
18318  to the current JSON value; example: `"iterators do not fit current value"`
18319  @throw invalid_iterator.204 if called on a primitive type with invalid
18320  iterators (i.e., if `first != begin()` and `last != end()`); example:
18321  `"iterators out of range"`
18322 
18323  @complexity The complexity depends on the type:
18324  - objects: `log(size()) + std::distance(first, last)`
18325  - arrays: linear in the distance between @a first and @a last, plus linear
18326  in the distance between @a last and end of the container
18327  - strings: linear in the length of the string
18328  - other types: constant
18329 
18330  @liveexample{The example shows the result of `erase()` for different JSON
18331  types.,erase__IteratorType_IteratorType}
18332 
18333  @sa @ref erase(IteratorType) -- removes the element at a given position
18334  @sa @ref erase(const typename object_t::key_type&) -- removes the element
18335  from an object at the given key
18336  @sa @ref erase(const size_type) -- removes the element from an array at
18337  the given index
18338 
18339  @since version 1.0.0
18340  */
18341  template<class IteratorType, typename std::enable_if<
18344  = 0>
18345  IteratorType erase(IteratorType first, IteratorType last)
18346  {
18347  // make sure iterator fits the current value
18348  if (JSON_HEDLEY_UNLIKELY(this != first.m_object or this != last.m_object))
18349  {
18350  JSON_THROW(invalid_iterator::create(203, "iterators do not fit current value"));
18351  }
18352 
18353  IteratorType result = end();
18354 
18355  switch (m_type)
18356  {
18357  case value_t::boolean:
18358  case value_t::number_float:
18359  case value_t::number_integer:
18360  case value_t::number_unsigned:
18361  case value_t::string:
18362  {
18363  if (JSON_HEDLEY_LIKELY(not first.m_it.primitive_iterator.is_begin()
18364  or not last.m_it.primitive_iterator.is_end()))
18365  {
18366  JSON_THROW(invalid_iterator::create(204, "iterators out of range"));
18367  }
18368 
18369  if (is_string())
18370  {
18371  AllocatorType<string_t> alloc;
18372  std::allocator_traits<decltype(alloc)>::destroy(alloc, m_value.string);
18373  std::allocator_traits<decltype(alloc)>::deallocate(alloc, m_value.string, 1);
18374  m_value.string = nullptr;
18375  }
18376 
18377  m_type = value_t::null;
18378  assert_invariant();
18379  break;
18380  }
18381 
18382  case value_t::object:
18383  {
18384  result.m_it.object_iterator = m_value.object->erase(first.m_it.object_iterator,
18385  last.m_it.object_iterator);
18386  break;
18387  }
18388 
18389  case value_t::array:
18390  {
18391  result.m_it.array_iterator = m_value.array->erase(first.m_it.array_iterator,
18392  last.m_it.array_iterator);
18393  break;
18394  }
18395 
18396  default:
18397  JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name())));
18398  }
18399 
18400  return result;
18401  }
18402 
18403  /*!
18404  @brief remove element from a JSON object given a key
18405 
18406  Removes elements from a JSON object with the key value @a key.
18407 
18408  @param[in] key value of the elements to remove
18409 
18410  @return Number of elements removed. If @a ObjectType is the default
18411  `std::map` type, the return value will always be `0` (@a key was not
18412  found) or `1` (@a key was found).
18413 
18414  @post References and iterators to the erased elements are invalidated.
18415  Other references and iterators are not affected.
18416 
18417  @throw type_error.307 when called on a type other than JSON object;
18418  example: `"cannot use erase() with null"`
18419 
18420  @complexity `log(size()) + count(key)`
18421 
18422  @liveexample{The example shows the effect of `erase()`.,erase__key_type}
18423 
18424  @sa @ref erase(IteratorType) -- removes the element at a given position
18425  @sa @ref erase(IteratorType, IteratorType) -- removes the elements in
18426  the given range
18427  @sa @ref erase(const size_type) -- removes the element from an array at
18428  the given index
18429 
18430  @since version 1.0.0
18431  */
18432  size_type erase(const typename object_t::key_type& key)
18433  {
18434  // this erase only works for objects
18435  if (JSON_HEDLEY_LIKELY(is_object()))
18436  {
18437  return m_value.object->erase(key);
18438  }
18439 
18440  JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name())));
18441  }
18442 
18443  /*!
18444  @brief remove element from a JSON array given an index
18445 
18446  Removes element from a JSON array at the index @a idx.
18447 
18448  @param[in] idx index of the element to remove
18449 
18450  @throw type_error.307 when called on a type other than JSON object;
18451  example: `"cannot use erase() with null"`
18452  @throw out_of_range.401 when `idx >= size()`; example: `"array index 17
18453  is out of range"`
18454 
18455  @complexity Linear in distance between @a idx and the end of the container.
18456 
18457  @liveexample{The example shows the effect of `erase()`.,erase__size_type}
18458 
18459  @sa @ref erase(IteratorType) -- removes the element at a given position
18460  @sa @ref erase(IteratorType, IteratorType) -- removes the elements in
18461  the given range
18462  @sa @ref erase(const typename object_t::key_type&) -- removes the element
18463  from an object at the given key
18464 
18465  @since version 1.0.0
18466  */
18467  void erase(const size_type idx)
18468  {
18469  // this erase only works for arrays
18470  if (JSON_HEDLEY_LIKELY(is_array()))
18471  {
18472  if (JSON_HEDLEY_UNLIKELY(idx >= size()))
18473  {
18474  JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range"));
18475  }
18476 
18477  m_value.array->erase(m_value.array->begin() + static_cast<difference_type>(idx));
18478  }
18479  else
18480  {
18481  JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name())));
18482  }
18483  }
18484 
18485  /// @}
18486 
18487 
18488  ////////////
18489  // lookup //
18490  ////////////
18491 
18492  /// @name lookup
18493  /// @{
18494 
18495  /*!
18496  @brief find an element in a JSON object
18497 
18498  Finds an element in a JSON object with key equivalent to @a key. If the
18499  element is not found or the JSON value is not an object, end() is
18500  returned.
18501 
18502  @note This method always returns @ref end() when executed on a JSON type
18503  that is not an object.
18504 
18505  @param[in] key key value of the element to search for.
18506 
18507  @return Iterator to an element with key equivalent to @a key. If no such
18508  element is found or the JSON value is not an object, past-the-end (see
18509  @ref end()) iterator is returned.
18510 
18511  @complexity Logarithmic in the size of the JSON object.
18512 
18513  @liveexample{The example shows how `find()` is used.,find__key_type}
18514 
18515  @sa @ref contains(KeyT&&) const -- checks whether a key exists
18516 
18517  @since version 1.0.0
18518  */
18519  template<typename KeyT>
18520  iterator find(KeyT&& key)
18521  {
18522  auto result = end();
18523 
18524  if (is_object())
18525  {
18526  result.m_it.object_iterator = m_value.object->find(std::forward<KeyT>(key));
18527  }
18528 
18529  return result;
18530  }
18531 
18532  /*!
18533  @brief find an element in a JSON object
18534  @copydoc find(KeyT&&)
18535  */
18536  template<typename KeyT>
18537  const_iterator find(KeyT&& key) const
18538  {
18539  auto result = cend();
18540 
18541  if (is_object())
18542  {
18543  result.m_it.object_iterator = m_value.object->find(std::forward<KeyT>(key));
18544  }
18545 
18546  return result;
18547  }
18548 
18549  /*!
18550  @brief returns the number of occurrences of a key in a JSON object
18551 
18552  Returns the number of elements with key @a key. If ObjectType is the
18553  default `std::map` type, the return value will always be `0` (@a key was
18554  not found) or `1` (@a key was found).
18555 
18556  @note This method always returns `0` when executed on a JSON type that is
18557  not an object.
18558 
18559  @param[in] key key value of the element to count
18560 
18561  @return Number of elements with key @a key. If the JSON value is not an
18562  object, the return value will be `0`.
18563 
18564  @complexity Logarithmic in the size of the JSON object.
18565 
18566  @liveexample{The example shows how `count()` is used.,count}
18567 
18568  @since version 1.0.0
18569  */
18570  template<typename KeyT>
18571  size_type count(KeyT&& key) const
18572  {
18573  // return 0 for all nonobject types
18574  return is_object() ? m_value.object->count(std::forward<KeyT>(key)) : 0;
18575  }
18576 
18577  /*!
18578  @brief check the existence of an element in a JSON object
18579 
18580  Check whether an element exists in a JSON object with key equivalent to
18581  @a key. If the element is not found or the JSON value is not an object,
18582  false is returned.
18583 
18584  @note This method always returns false when executed on a JSON type
18585  that is not an object.
18586 
18587  @param[in] key key value to check its existence.
18588 
18589  @return true if an element with specified @a key exists. If no such
18590  element with such key is found or the JSON value is not an object,
18591  false is returned.
18592 
18593  @complexity Logarithmic in the size of the JSON object.
18594 
18595  @liveexample{The following code shows an example for `contains()`.,contains}
18596 
18597  @sa @ref find(KeyT&&) -- returns an iterator to an object element
18598  @sa @ref contains(const json_pointer&) const -- checks the existence for a JSON pointer
18599 
18600  @since version 3.6.0
18601  */
18602  template<typename KeyT, typename std::enable_if<
18604  bool contains(KeyT && key) const
18605  {
18606  return is_object() and m_value.object->find(std::forward<KeyT>(key)) != m_value.object->end();
18607  }
18608 
18609  /*!
18610  @brief check the existence of an element in a JSON object given a JSON pointer
18611 
18612  Check whether the given JSON pointer @a ptr can be resolved in the current
18613  JSON value.
18614 
18615  @note This method can be executed on any JSON value type.
18616 
18617  @param[in] ptr JSON pointer to check its existence.
18618 
18619  @return true if the JSON pointer can be resolved to a stored value, false
18620  otherwise.
18621 
18622  @post If `j.contains(ptr)` returns true, it is safe to call `j[ptr]`.
18623 
18624  @throw parse_error.106 if an array index begins with '0'
18625  @throw parse_error.109 if an array index was not a number
18626 
18627  @complexity Logarithmic in the size of the JSON object.
18628 
18629  @liveexample{The following code shows an example for `contains()`.,contains_json_pointer}
18630 
18631  @sa @ref contains(KeyT &&) const -- checks the existence of a key
18632 
18633  @since version 3.7.0
18634  */
18635  bool contains(const json_pointer& ptr) const
18636  {
18637  return ptr.contains(this);
18638  }
18639 
18640  /// @}
18641 
18642 
18643  ///////////////
18644  // iterators //
18645  ///////////////
18646 
18647  /// @name iterators
18648  /// @{
18649 
18650  /*!
18651  @brief returns an iterator to the first element
18652 
18653  Returns an iterator to the first element.
18654 
18655  @image html range-begin-end.svg "Illustration from cppreference.com"
18656 
18657  @return iterator to the first element
18658 
18659  @complexity Constant.
18660 
18661  @requirement This function helps `basic_json` satisfying the
18662  [Container](https://en.cppreference.com/w/cpp/named_req/Container)
18663  requirements:
18664  - The complexity is constant.
18665 
18666  @liveexample{The following code shows an example for `begin()`.,begin}
18667 
18668  @sa @ref cbegin() -- returns a const iterator to the beginning
18669  @sa @ref end() -- returns an iterator to the end
18670  @sa @ref cend() -- returns a const iterator to the end
18671 
18672  @since version 1.0.0
18673  */
18674  iterator begin() noexcept
18675  {
18676  iterator result(this);
18677  result.set_begin();
18678  return result;
18679  }
18680 
18681  /*!
18682  @copydoc basic_json::cbegin()
18683  */
18685  {
18686  return cbegin();
18687  }
18688 
18689  /*!
18690  @brief returns a const iterator to the first element
18691 
18692  Returns a const iterator to the first element.
18693 
18694  @image html range-begin-end.svg "Illustration from cppreference.com"
18695 
18696  @return const iterator to the first element
18697 
18698  @complexity Constant.
18699 
18700  @requirement This function helps `basic_json` satisfying the
18701  [Container](https://en.cppreference.com/w/cpp/named_req/Container)
18702  requirements:
18703  - The complexity is constant.
18704  - Has the semantics of `const_cast<const basic_json&>(*this).begin()`.
18705 
18706  @liveexample{The following code shows an example for `cbegin()`.,cbegin}
18707 
18708  @sa @ref begin() -- returns an iterator to the beginning
18709  @sa @ref end() -- returns an iterator to the end
18710  @sa @ref cend() -- returns a const iterator to the end
18711 
18712  @since version 1.0.0
18713  */
18715  {
18716  const_iterator result(this);
18717  result.set_begin();
18718  return result;
18719  }
18720 
18721  /*!
18722  @brief returns an iterator to one past the last element
18723 
18724  Returns an iterator to one past the last element.
18725 
18726  @image html range-begin-end.svg "Illustration from cppreference.com"
18727 
18728  @return iterator one past the last element
18729 
18730  @complexity Constant.
18731 
18732  @requirement This function helps `basic_json` satisfying the
18733  [Container](https://en.cppreference.com/w/cpp/named_req/Container)
18734  requirements:
18735  - The complexity is constant.
18736 
18737  @liveexample{The following code shows an example for `end()`.,end}
18738 
18739  @sa @ref cend() -- returns a const iterator to the end
18740  @sa @ref begin() -- returns an iterator to the beginning
18741  @sa @ref cbegin() -- returns a const iterator to the beginning
18742 
18743  @since version 1.0.0
18744  */
18745  iterator end() noexcept
18746  {
18747  iterator result(this);
18748  result.set_end();
18749  return result;
18750  }
18751 
18752  /*!
18753  @copydoc basic_json::cend()
18754  */
18756  {
18757  return cend();
18758  }
18759 
18760  /*!
18761  @brief returns a const iterator to one past the last element
18762 
18763  Returns a const iterator to one past the last element.
18764 
18765  @image html range-begin-end.svg "Illustration from cppreference.com"
18766 
18767  @return const iterator one past the last element
18768 
18769  @complexity Constant.
18770 
18771  @requirement This function helps `basic_json` satisfying the
18772  [Container](https://en.cppreference.com/w/cpp/named_req/Container)
18773  requirements:
18774  - The complexity is constant.
18775  - Has the semantics of `const_cast<const basic_json&>(*this).end()`.
18776 
18777  @liveexample{The following code shows an example for `cend()`.,cend}
18778 
18779  @sa @ref end() -- returns an iterator to the end
18780  @sa @ref begin() -- returns an iterator to the beginning
18781  @sa @ref cbegin() -- returns a const iterator to the beginning
18782 
18783  @since version 1.0.0
18784  */
18786  {
18787  const_iterator result(this);
18788  result.set_end();
18789  return result;
18790  }
18791 
18792  /*!
18793  @brief returns an iterator to the reverse-beginning
18794 
18795  Returns an iterator to the reverse-beginning; that is, the last element.
18796 
18797  @image html range-rbegin-rend.svg "Illustration from cppreference.com"
18798 
18799  @complexity Constant.
18800 
18801  @requirement This function helps `basic_json` satisfying the
18802  [ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer)
18803  requirements:
18804  - The complexity is constant.
18805  - Has the semantics of `reverse_iterator(end())`.
18806 
18807  @liveexample{The following code shows an example for `rbegin()`.,rbegin}
18808 
18809  @sa @ref crbegin() -- returns a const reverse iterator to the beginning
18810  @sa @ref rend() -- returns a reverse iterator to the end
18811  @sa @ref crend() -- returns a const reverse iterator to the end
18812 
18813  @since version 1.0.0
18814  */
18816  {
18817  return reverse_iterator(end());
18818  }
18819 
18820  /*!
18821  @copydoc basic_json::crbegin()
18822  */
18824  {
18825  return crbegin();
18826  }
18827 
18828  /*!
18829  @brief returns an iterator to the reverse-end
18830 
18831  Returns an iterator to the reverse-end; that is, one before the first
18832  element.
18833 
18834  @image html range-rbegin-rend.svg "Illustration from cppreference.com"
18835 
18836  @complexity Constant.
18837 
18838  @requirement This function helps `basic_json` satisfying the
18839  [ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer)
18840  requirements:
18841  - The complexity is constant.
18842  - Has the semantics of `reverse_iterator(begin())`.
18843 
18844  @liveexample{The following code shows an example for `rend()`.,rend}
18845 
18846  @sa @ref crend() -- returns a const reverse iterator to the end
18847  @sa @ref rbegin() -- returns a reverse iterator to the beginning
18848  @sa @ref crbegin() -- returns a const reverse iterator to the beginning
18849 
18850  @since version 1.0.0
18851  */
18853  {
18854  return reverse_iterator(begin());
18855  }
18856 
18857  /*!
18858  @copydoc basic_json::crend()
18859  */
18861  {
18862  return crend();
18863  }
18864 
18865  /*!
18866  @brief returns a const reverse iterator to the last element
18867 
18868  Returns a const iterator to the reverse-beginning; that is, the last
18869  element.
18870 
18871  @image html range-rbegin-rend.svg "Illustration from cppreference.com"
18872 
18873  @complexity Constant.
18874 
18875  @requirement This function helps `basic_json` satisfying the
18876  [ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer)
18877  requirements:
18878  - The complexity is constant.
18879  - Has the semantics of `const_cast<const basic_json&>(*this).rbegin()`.
18880 
18881  @liveexample{The following code shows an example for `crbegin()`.,crbegin}
18882 
18883  @sa @ref rbegin() -- returns a reverse iterator to the beginning
18884  @sa @ref rend() -- returns a reverse iterator to the end
18885  @sa @ref crend() -- returns a const reverse iterator to the end
18886 
18887  @since version 1.0.0
18888  */
18890  {
18891  return const_reverse_iterator(cend());
18892  }
18893 
18894  /*!
18895  @brief returns a const reverse iterator to one before the first
18896 
18897  Returns a const reverse iterator to the reverse-end; that is, one before
18898  the first element.
18899 
18900  @image html range-rbegin-rend.svg "Illustration from cppreference.com"
18901 
18902  @complexity Constant.
18903 
18904  @requirement This function helps `basic_json` satisfying the
18905  [ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer)
18906  requirements:
18907  - The complexity is constant.
18908  - Has the semantics of `const_cast<const basic_json&>(*this).rend()`.
18909 
18910  @liveexample{The following code shows an example for `crend()`.,crend}
18911 
18912  @sa @ref rend() -- returns a reverse iterator to the end
18913  @sa @ref rbegin() -- returns a reverse iterator to the beginning
18914  @sa @ref crbegin() -- returns a const reverse iterator to the beginning
18915 
18916  @since version 1.0.0
18917  */
18919  {
18920  return const_reverse_iterator(cbegin());
18921  }
18922 
18923  public:
18924  /*!
18925  @brief wrapper to access iterator member functions in range-based for
18926 
18927  This function allows to access @ref iterator::key() and @ref
18928  iterator::value() during range-based for loops. In these loops, a
18929  reference to the JSON values is returned, so there is no access to the
18930  underlying iterator.
18931 
18932  For loop without iterator_wrapper:
18933 
18934  @code{cpp}
18935  for (auto it = j_object.begin(); it != j_object.end(); ++it)
18936  {
18937  std::cout << "key: " << it.key() << ", value:" << it.value() << '\n';
18938  }
18939  @endcode
18940 
18941  Range-based for loop without iterator proxy:
18942 
18943  @code{cpp}
18944  for (auto it : j_object)
18945  {
18946  // "it" is of type json::reference and has no key() member
18947  std::cout << "value: " << it << '\n';
18948  }
18949  @endcode
18950 
18951  Range-based for loop with iterator proxy:
18952 
18953  @code{cpp}
18954  for (auto it : json::iterator_wrapper(j_object))
18955  {
18956  std::cout << "key: " << it.key() << ", value:" << it.value() << '\n';
18957  }
18958  @endcode
18959 
18960  @note When iterating over an array, `key()` will return the index of the
18961  element as string (see example).
18962 
18963  @param[in] ref reference to a JSON value
18964  @return iteration proxy object wrapping @a ref with an interface to use in
18965  range-based for loops
18966 
18967  @liveexample{The following code shows how the wrapper is used,iterator_wrapper}
18968 
18969  @exceptionsafety Strong guarantee: if an exception is thrown, there are no
18970  changes in the JSON value.
18971 
18972  @complexity Constant.
18973 
18974  @note The name of this function is not yet final and may change in the
18975  future.
18976 
18977  @deprecated This stream operator is deprecated and will be removed in
18978  future 4.0.0 of the library. Please use @ref items() instead;
18979  that is, replace `json::iterator_wrapper(j)` with `j.items()`.
18980  */
18981  JSON_HEDLEY_DEPRECATED(3.1.0)
18982  static iteration_proxy<iterator> iterator_wrapper(reference ref) noexcept
18983  {
18984  return ref.items();
18985  }
18986 
18987  /*!
18988  @copydoc iterator_wrapper(reference)
18989  */
18990  JSON_HEDLEY_DEPRECATED(3.1.0)
18991  static iteration_proxy<const_iterator> iterator_wrapper(const_reference ref) noexcept
18992  {
18993  return ref.items();
18994  }
18995 
18996  /*!
18997  @brief helper to access iterator member functions in range-based for
18998 
18999  This function allows to access @ref iterator::key() and @ref
19000  iterator::value() during range-based for loops. In these loops, a
19001  reference to the JSON values is returned, so there is no access to the
19002  underlying iterator.
19003 
19004  For loop without `items()` function:
19005 
19006  @code{cpp}
19007  for (auto it = j_object.begin(); it != j_object.end(); ++it)
19008  {
19009  std::cout << "key: " << it.key() << ", value:" << it.value() << '\n';
19010  }
19011  @endcode
19012 
19013  Range-based for loop without `items()` function:
19014 
19015  @code{cpp}
19016  for (auto it : j_object)
19017  {
19018  // "it" is of type json::reference and has no key() member
19019  std::cout << "value: " << it << '\n';
19020  }
19021  @endcode
19022 
19023  Range-based for loop with `items()` function:
19024 
19025  @code{cpp}
19026  for (auto& el : j_object.items())
19027  {
19028  std::cout << "key: " << el.key() << ", value:" << el.value() << '\n';
19029  }
19030  @endcode
19031 
19032  The `items()` function also allows to use
19033  [structured bindings](https://en.cppreference.com/w/cpp/language/structured_binding)
19034  (C++17):
19035 
19036  @code{cpp}
19037  for (auto& [key, val] : j_object.items())
19038  {
19039  std::cout << "key: " << key << ", value:" << val << '\n';
19040  }
19041  @endcode
19042 
19043  @note When iterating over an array, `key()` will return the index of the
19044  element as string (see example). For primitive types (e.g., numbers),
19045  `key()` returns an empty string.
19046 
19047  @return iteration proxy object wrapping @a ref with an interface to use in
19048  range-based for loops
19049 
19050  @liveexample{The following code shows how the function is used.,items}
19051 
19052  @exceptionsafety Strong guarantee: if an exception is thrown, there are no
19053  changes in the JSON value.
19054 
19055  @complexity Constant.
19056 
19057  @since version 3.1.0, structured bindings support since 3.5.0.
19058  */
19060  {
19061  return iteration_proxy<iterator>(*this);
19062  }
19063 
19064  /*!
19065  @copydoc items()
19066  */
19068  {
19069  return iteration_proxy<const_iterator>(*this);
19070  }
19071 
19072  /// @}
19073 
19074 
19075  //////////////
19076  // capacity //
19077  //////////////
19078 
19079  /// @name capacity
19080  /// @{
19081 
19082  /*!
19083  @brief checks whether the container is empty.
19084 
19085  Checks if a JSON value has no elements (i.e. whether its @ref size is `0`).
19086 
19087  @return The return value depends on the different types and is
19088  defined as follows:
19089  Value type | return value
19090  ----------- | -------------
19091  null | `true`
19092  boolean | `false`
19093  string | `false`
19094  number | `false`
19095  object | result of function `object_t::empty()`
19096  array | result of function `array_t::empty()`
19097 
19098  @liveexample{The following code uses `empty()` to check if a JSON
19099  object contains any elements.,empty}
19100 
19101  @complexity Constant, as long as @ref array_t and @ref object_t satisfy
19102  the Container concept; that is, their `empty()` functions have constant
19103  complexity.
19104 
19105  @iterators No changes.
19106 
19107  @exceptionsafety No-throw guarantee: this function never throws exceptions.
19108 
19109  @note This function does not return whether a string stored as JSON value
19110  is empty - it returns whether the JSON container itself is empty which is
19111  false in the case of a string.
19112 
19113  @requirement This function helps `basic_json` satisfying the
19114  [Container](https://en.cppreference.com/w/cpp/named_req/Container)
19115  requirements:
19116  - The complexity is constant.
19117  - Has the semantics of `begin() == end()`.
19118 
19119  @sa @ref size() -- returns the number of elements
19120 
19121  @since version 1.0.0
19122  */
19123  bool empty() const noexcept
19124  {
19125  switch (m_type)
19126  {
19127  case value_t::null:
19128  {
19129  // null values are empty
19130  return true;
19131  }
19132 
19133  case value_t::array:
19134  {
19135  // delegate call to array_t::empty()
19136  return m_value.array->empty();
19137  }
19138 
19139  case value_t::object:
19140  {
19141  // delegate call to object_t::empty()
19142  return m_value.object->empty();
19143  }
19144 
19145  default:
19146  {
19147  // all other types are nonempty
19148  return false;
19149  }
19150  }
19151  }
19152 
19153  /*!
19154  @brief returns the number of elements
19155 
19156  Returns the number of elements in a JSON value.
19157 
19158  @return The return value depends on the different types and is
19159  defined as follows:
19160  Value type | return value
19161  ----------- | -------------
19162  null | `0`
19163  boolean | `1`
19164  string | `1`
19165  number | `1`
19166  object | result of function object_t::size()
19167  array | result of function array_t::size()
19168 
19169  @liveexample{The following code calls `size()` on the different value
19170  types.,size}
19171 
19172  @complexity Constant, as long as @ref array_t and @ref object_t satisfy
19173  the Container concept; that is, their size() functions have constant
19174  complexity.
19175 
19176  @iterators No changes.
19177 
19178  @exceptionsafety No-throw guarantee: this function never throws exceptions.
19179 
19180  @note This function does not return the length of a string stored as JSON
19181  value - it returns the number of elements in the JSON value which is 1 in
19182  the case of a string.
19183 
19184  @requirement This function helps `basic_json` satisfying the
19185  [Container](https://en.cppreference.com/w/cpp/named_req/Container)
19186  requirements:
19187  - The complexity is constant.
19188  - Has the semantics of `std::distance(begin(), end())`.
19189 
19190  @sa @ref empty() -- checks whether the container is empty
19191  @sa @ref max_size() -- returns the maximal number of elements
19192 
19193  @since version 1.0.0
19194  */
19195  size_type size() const noexcept
19196  {
19197  switch (m_type)
19198  {
19199  case value_t::null:
19200  {
19201  // null values are empty
19202  return 0;
19203  }
19204 
19205  case value_t::array:
19206  {
19207  // delegate call to array_t::size()
19208  return m_value.array->size();
19209  }
19210 
19211  case value_t::object:
19212  {
19213  // delegate call to object_t::size()
19214  return m_value.object->size();
19215  }
19216 
19217  default:
19218  {
19219  // all other types have size 1
19220  return 1;
19221  }
19222  }
19223  }
19224 
19225  /*!
19226  @brief returns the maximum possible number of elements
19227 
19228  Returns the maximum number of elements a JSON value is able to hold due to
19229  system or library implementation limitations, i.e. `std::distance(begin(),
19230  end())` for the JSON value.
19231 
19232  @return The return value depends on the different types and is
19233  defined as follows:
19234  Value type | return value
19235  ----------- | -------------
19236  null | `0` (same as `size()`)
19237  boolean | `1` (same as `size()`)
19238  string | `1` (same as `size()`)
19239  number | `1` (same as `size()`)
19240  object | result of function `object_t::max_size()`
19241  array | result of function `array_t::max_size()`
19242 
19243  @liveexample{The following code calls `max_size()` on the different value
19244  types. Note the output is implementation specific.,max_size}
19245 
19246  @complexity Constant, as long as @ref array_t and @ref object_t satisfy
19247  the Container concept; that is, their `max_size()` functions have constant
19248  complexity.
19249 
19250  @iterators No changes.
19251 
19252  @exceptionsafety No-throw guarantee: this function never throws exceptions.
19253 
19254  @requirement This function helps `basic_json` satisfying the
19255  [Container](https://en.cppreference.com/w/cpp/named_req/Container)
19256  requirements:
19257  - The complexity is constant.
19258  - Has the semantics of returning `b.size()` where `b` is the largest
19259  possible JSON value.
19260 
19261  @sa @ref size() -- returns the number of elements
19262 
19263  @since version 1.0.0
19264  */
19266  {
19267  switch (m_type)
19268  {
19269  case value_t::array:
19270  {
19271  // delegate call to array_t::max_size()
19272  return m_value.array->max_size();
19273  }
19274 
19275  case value_t::object:
19276  {
19277  // delegate call to object_t::max_size()
19278  return m_value.object->max_size();
19279  }
19280 
19281  default:
19282  {
19283  // all other types have max_size() == size()
19284  return size();
19285  }
19286  }
19287  }
19288 
19289  /// @}
19290 
19291 
19292  ///////////////
19293  // modifiers //
19294  ///////////////
19295 
19296  /// @name modifiers
19297  /// @{
19298 
19299  /*!
19300  @brief clears the contents
19301 
19302  Clears the content of a JSON value and resets it to the default value as
19303  if @ref basic_json(value_t) would have been called with the current value
19304  type from @ref type():
19305 
19306  Value type | initial value
19307  ----------- | -------------
19308  null | `null`
19309  boolean | `false`
19310  string | `""`
19311  number | `0`
19312  object | `{}`
19313  array | `[]`
19314 
19315  @post Has the same effect as calling
19316  @code {.cpp}
19317  *this = basic_json(type());
19318  @endcode
19319 
19320  @liveexample{The example below shows the effect of `clear()` to different
19321  JSON types.,clear}
19322 
19323  @complexity Linear in the size of the JSON value.
19324 
19325  @iterators All iterators, pointers and references related to this container
19326  are invalidated.
19327 
19328  @exceptionsafety No-throw guarantee: this function never throws exceptions.
19329 
19330  @sa @ref basic_json(value_t) -- constructor that creates an object with the
19331  same value than calling `clear()`
19332 
19333  @since version 1.0.0
19334  */
19335  void clear() noexcept
19336  {
19337  switch (m_type)
19338  {
19339  case value_t::number_integer:
19340  {
19341  m_value.number_integer = 0;
19342  break;
19343  }
19344 
19345  case value_t::number_unsigned:
19346  {
19347  m_value.number_unsigned = 0;
19348  break;
19349  }
19350 
19351  case value_t::number_float:
19352  {
19353  m_value.number_float = 0.0;
19354  break;
19355  }
19356 
19357  case value_t::boolean:
19358  {
19359  m_value.boolean = false;
19360  break;
19361  }
19362 
19363  case value_t::string:
19364  {
19365  m_value.string->clear();
19366  break;
19367  }
19368 
19369  case value_t::array:
19370  {
19371  m_value.array->clear();
19372  break;
19373  }
19374 
19375  case value_t::object:
19376  {
19377  m_value.object->clear();
19378  break;
19379  }
19380 
19381  default:
19382  break;
19383  }
19384  }
19385 
19386  /*!
19387  @brief add an object to an array
19388 
19389  Appends the given element @a val to the end of the JSON value. If the
19390  function is called on a JSON null value, an empty array is created before
19391  appending @a val.
19392 
19393  @param[in] val the value to add to the JSON array
19394 
19395  @throw type_error.308 when called on a type other than JSON array or
19396  null; example: `"cannot use push_back() with number"`
19397 
19398  @complexity Amortized constant.
19399 
19400  @liveexample{The example shows how `push_back()` and `+=` can be used to
19401  add elements to a JSON array. Note how the `null` value was silently
19402  converted to a JSON array.,push_back}
19403 
19404  @since version 1.0.0
19405  */
19406  void push_back(basic_json&& val)
19407  {
19408  // push_back only works for null objects or arrays
19409  if (JSON_HEDLEY_UNLIKELY(not(is_null() or is_array())))
19410  {
19411  JSON_THROW(type_error::create(308, "cannot use push_back() with " + std::string(type_name())));
19412  }
19413 
19414  // transform null object into an array
19415  if (is_null())
19416  {
19417  m_type = value_t::array;
19418  m_value = value_t::array;
19419  assert_invariant();
19420  }
19421 
19422  // add element to array (move semantics)
19423  m_value.array->push_back(std::move(val));
19424  // invalidate object: mark it null so we do not call the destructor
19425  // cppcheck-suppress accessMoved
19426  val.m_type = value_t::null;
19427  }
19428 
19429  /*!
19430  @brief add an object to an array
19431  @copydoc push_back(basic_json&&)
19432  */
19434  {
19435  push_back(std::move(val));
19436  return *this;
19437  }
19438 
19439  /*!
19440  @brief add an object to an array
19441  @copydoc push_back(basic_json&&)
19442  */
19443  void push_back(const basic_json& val)
19444  {
19445  // push_back only works for null objects or arrays
19446  if (JSON_HEDLEY_UNLIKELY(not(is_null() or is_array())))
19447  {
19448  JSON_THROW(type_error::create(308, "cannot use push_back() with " + std::string(type_name())));
19449  }
19450 
19451  // transform null object into an array
19452  if (is_null())
19453  {
19454  m_type = value_t::array;
19455  m_value = value_t::array;
19456  assert_invariant();
19457  }
19458 
19459  // add element to array
19460  m_value.array->push_back(val);
19461  }
19462 
19463  /*!
19464  @brief add an object to an array
19465  @copydoc push_back(basic_json&&)
19466  */
19468  {
19469  push_back(val);
19470  return *this;
19471  }
19472 
19473  /*!
19474  @brief add an object to an object
19475 
19476  Inserts the given element @a val to the JSON object. If the function is
19477  called on a JSON null value, an empty object is created before inserting
19478  @a val.
19479 
19480  @param[in] val the value to add to the JSON object
19481 
19482  @throw type_error.308 when called on a type other than JSON object or
19483  null; example: `"cannot use push_back() with number"`
19484 
19485  @complexity Logarithmic in the size of the container, O(log(`size()`)).
19486 
19487  @liveexample{The example shows how `push_back()` and `+=` can be used to
19488  add elements to a JSON object. Note how the `null` value was silently
19489  converted to a JSON object.,push_back__object_t__value}
19490 
19491  @since version 1.0.0
19492  */
19493  void push_back(const typename object_t::value_type& val)
19494  {
19495  // push_back only works for null objects or objects
19496  if (JSON_HEDLEY_UNLIKELY(not(is_null() or is_object())))
19497  {
19498  JSON_THROW(type_error::create(308, "cannot use push_back() with " + std::string(type_name())));
19499  }
19500 
19501  // transform null object into an object
19502  if (is_null())
19503  {
19504  m_type = value_t::object;
19505  m_value = value_t::object;
19506  assert_invariant();
19507  }
19508 
19509  // add element to array
19510  m_value.object->insert(val);
19511  }
19512 
19513  /*!
19514  @brief add an object to an object
19515  @copydoc push_back(const typename object_t::value_type&)
19516  */
19517  reference operator+=(const typename object_t::value_type& val)
19518  {
19519  push_back(val);
19520  return *this;
19521  }
19522 
19523  /*!
19524  @brief add an object to an object
19525 
19526  This function allows to use `push_back` with an initializer list. In case
19527 
19528  1. the current value is an object,
19529  2. the initializer list @a init contains only two elements, and
19530  3. the first element of @a init is a string,
19531 
19532  @a init is converted into an object element and added using
19533  @ref push_back(const typename object_t::value_type&). Otherwise, @a init
19534  is converted to a JSON value and added using @ref push_back(basic_json&&).
19535 
19536  @param[in] init an initializer list
19537 
19538  @complexity Linear in the size of the initializer list @a init.
19539 
19540  @note This function is required to resolve an ambiguous overload error,
19541  because pairs like `{"key", "value"}` can be both interpreted as
19542  `object_t::value_type` or `std::initializer_list<basic_json>`, see
19543  https://github.com/nlohmann/json/issues/235 for more information.
19544 
19545  @liveexample{The example shows how initializer lists are treated as
19546  objects when possible.,push_back__initializer_list}
19547  */
19549  {
19550  if (is_object() and init.size() == 2 and (*init.begin())->is_string())
19551  {
19552  basic_json&& key = init.begin()->moved_or_copied();
19553  push_back(typename object_t::value_type(
19554  std::move(key.get_ref<string_t&>()), (init.begin() + 1)->moved_or_copied()));
19555  }
19556  else
19557  {
19558  push_back(basic_json(init));
19559  }
19560  }
19561 
19562  /*!
19563  @brief add an object to an object
19564  @copydoc push_back(initializer_list_t)
19565  */
19567  {
19568  push_back(init);
19569  return *this;
19570  }
19571 
19572  /*!
19573  @brief add an object to an array
19574 
19575  Creates a JSON value from the passed parameters @a args to the end of the
19576  JSON value. If the function is called on a JSON null value, an empty array
19577  is created before appending the value created from @a args.
19578 
19579  @param[in] args arguments to forward to a constructor of @ref basic_json
19580  @tparam Args compatible types to create a @ref basic_json object
19581 
19582  @return reference to the inserted element
19583 
19584  @throw type_error.311 when called on a type other than JSON array or
19585  null; example: `"cannot use emplace_back() with number"`
19586 
19587  @complexity Amortized constant.
19588 
19589  @liveexample{The example shows how `push_back()` can be used to add
19590  elements to a JSON array. Note how the `null` value was silently converted
19591  to a JSON array.,emplace_back}
19592 
19593  @since version 2.0.8, returns reference since 3.7.0
19594  */
19595  template<class... Args>
19597  {
19598  // emplace_back only works for null objects or arrays
19599  if (JSON_HEDLEY_UNLIKELY(not(is_null() or is_array())))
19600  {
19601  JSON_THROW(type_error::create(311, "cannot use emplace_back() with " + std::string(type_name())));
19602  }
19603 
19604  // transform null object into an array
19605  if (is_null())
19606  {
19607  m_type = value_t::array;
19608  m_value = value_t::array;
19609  assert_invariant();
19610  }
19611 
19612  // add element to array (perfect forwarding)
19613 #ifdef JSON_HAS_CPP_17
19614  return m_value.array->emplace_back(std::forward<Args>(args)...);
19615 #else
19616  m_value.array->emplace_back(std::forward<Args>(args)...);
19617  return m_value.array->back();
19618 #endif
19619  }
19620 
19621  /*!
19622  @brief add an object to an object if key does not exist
19623 
19624  Inserts a new element into a JSON object constructed in-place with the
19625  given @a args if there is no element with the key in the container. If the
19626  function is called on a JSON null value, an empty object is created before
19627  appending the value created from @a args.
19628 
19629  @param[in] args arguments to forward to a constructor of @ref basic_json
19630  @tparam Args compatible types to create a @ref basic_json object
19631 
19632  @return a pair consisting of an iterator to the inserted element, or the
19633  already-existing element if no insertion happened, and a bool
19634  denoting whether the insertion took place.
19635 
19636  @throw type_error.311 when called on a type other than JSON object or
19637  null; example: `"cannot use emplace() with number"`
19638 
19639  @complexity Logarithmic in the size of the container, O(log(`size()`)).
19640 
19641  @liveexample{The example shows how `emplace()` can be used to add elements
19642  to a JSON object. Note how the `null` value was silently converted to a
19643  JSON object. Further note how no value is added if there was already one
19644  value stored with the same key.,emplace}
19645 
19646  @since version 2.0.8
19647  */
19648  template<class... Args>
19649  std::pair<iterator, bool> emplace(Args&& ... args)
19650  {
19651  // emplace only works for null objects or arrays
19652  if (JSON_HEDLEY_UNLIKELY(not(is_null() or is_object())))
19653  {
19654  JSON_THROW(type_error::create(311, "cannot use emplace() with " + std::string(type_name())));
19655  }
19656 
19657  // transform null object into an object
19658  if (is_null())
19659  {
19660  m_type = value_t::object;
19661  m_value = value_t::object;
19662  assert_invariant();
19663  }
19664 
19665  // add element to array (perfect forwarding)
19666  auto res = m_value.object->emplace(std::forward<Args>(args)...);
19667  // create result iterator and set iterator to the result of emplace
19668  auto it = begin();
19669  it.m_it.object_iterator = res.first;
19670 
19671  // return pair of iterator and boolean
19672  return {it, res.second};
19673  }
19674 
19675  /// Helper for insertion of an iterator
19676  /// @note: This uses std::distance to support GCC 4.8,
19677  /// see https://github.com/nlohmann/json/pull/1257
19678  template<typename... Args>
19680  {
19681  iterator result(this);
19682  assert(m_value.array != nullptr);
19683 
19684  auto insert_pos = std::distance(m_value.array->begin(), pos.m_it.array_iterator);
19685  m_value.array->insert(pos.m_it.array_iterator, std::forward<Args>(args)...);
19686  result.m_it.array_iterator = m_value.array->begin() + insert_pos;
19687 
19688  // This could have been written as:
19689  // result.m_it.array_iterator = m_value.array->insert(pos.m_it.array_iterator, cnt, val);
19690  // but the return value of insert is missing in GCC 4.8, so it is written this way instead.
19691 
19692  return result;
19693  }
19694 
19695  /*!
19696  @brief inserts element
19697 
19698  Inserts element @a val before iterator @a pos.
19699 
19700  @param[in] pos iterator before which the content will be inserted; may be
19701  the end() iterator
19702  @param[in] val element to insert
19703  @return iterator pointing to the inserted @a val.
19704 
19705  @throw type_error.309 if called on JSON values other than arrays;
19706  example: `"cannot use insert() with string"`
19707  @throw invalid_iterator.202 if @a pos is not an iterator of *this;
19708  example: `"iterator does not fit current value"`
19709 
19710  @complexity Constant plus linear in the distance between @a pos and end of
19711  the container.
19712 
19713  @liveexample{The example shows how `insert()` is used.,insert}
19714 
19715  @since version 1.0.0
19716  */
19718  {
19719  // insert only works for arrays
19720  if (JSON_HEDLEY_LIKELY(is_array()))
19721  {
19722  // check if iterator pos fits to this JSON value
19723  if (JSON_HEDLEY_UNLIKELY(pos.m_object != this))
19724  {
19725  JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
19726  }
19727 
19728  // insert to array and return iterator
19729  return insert_iterator(pos, val);
19730  }
19731 
19732  JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
19733  }
19734 
19735  /*!
19736  @brief inserts element
19737  @copydoc insert(const_iterator, const basic_json&)
19738  */
19740  {
19741  return insert(pos, val);
19742  }
19743 
19744  /*!
19745  @brief inserts elements
19746 
19747  Inserts @a cnt copies of @a val before iterator @a pos.
19748 
19749  @param[in] pos iterator before which the content will be inserted; may be
19750  the end() iterator
19751  @param[in] cnt number of copies of @a val to insert
19752  @param[in] val element to insert
19753  @return iterator pointing to the first element inserted, or @a pos if
19754  `cnt==0`
19755 
19756  @throw type_error.309 if called on JSON values other than arrays; example:
19757  `"cannot use insert() with string"`
19758  @throw invalid_iterator.202 if @a pos is not an iterator of *this;
19759  example: `"iterator does not fit current value"`
19760 
19761  @complexity Linear in @a cnt plus linear in the distance between @a pos
19762  and end of the container.
19763 
19764  @liveexample{The example shows how `insert()` is used.,insert__count}
19765 
19766  @since version 1.0.0
19767  */
19769  {
19770  // insert only works for arrays
19771  if (JSON_HEDLEY_LIKELY(is_array()))
19772  {
19773  // check if iterator pos fits to this JSON value
19774  if (JSON_HEDLEY_UNLIKELY(pos.m_object != this))
19775  {
19776  JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
19777  }
19778 
19779  // insert to array and return iterator
19780  return insert_iterator(pos, cnt, val);
19781  }
19782 
19783  JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
19784  }
19785 
19786  /*!
19787  @brief inserts elements
19788 
19789  Inserts elements from range `[first, last)` before iterator @a pos.
19790 
19791  @param[in] pos iterator before which the content will be inserted; may be
19792  the end() iterator
19793  @param[in] first begin of the range of elements to insert
19794  @param[in] last end of the range of elements to insert
19795 
19796  @throw type_error.309 if called on JSON values other than arrays; example:
19797  `"cannot use insert() with string"`
19798  @throw invalid_iterator.202 if @a pos is not an iterator of *this;
19799  example: `"iterator does not fit current value"`
19800  @throw invalid_iterator.210 if @a first and @a last do not belong to the
19801  same JSON value; example: `"iterators do not fit"`
19802  @throw invalid_iterator.211 if @a first or @a last are iterators into
19803  container for which insert is called; example: `"passed iterators may not
19804  belong to container"`
19805 
19806  @return iterator pointing to the first element inserted, or @a pos if
19807  `first==last`
19808 
19809  @complexity Linear in `std::distance(first, last)` plus linear in the
19810  distance between @a pos and end of the container.
19811 
19812  @liveexample{The example shows how `insert()` is used.,insert__range}
19813 
19814  @since version 1.0.0
19815  */
19817  {
19818  // insert only works for arrays
19819  if (JSON_HEDLEY_UNLIKELY(not is_array()))
19820  {
19821  JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
19822  }
19823 
19824  // check if iterator pos fits to this JSON value
19825  if (JSON_HEDLEY_UNLIKELY(pos.m_object != this))
19826  {
19827  JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
19828  }
19829 
19830  // check if range iterators belong to the same JSON object
19831  if (JSON_HEDLEY_UNLIKELY(first.m_object != last.m_object))
19832  {
19833  JSON_THROW(invalid_iterator::create(210, "iterators do not fit"));
19834  }
19835 
19836  if (JSON_HEDLEY_UNLIKELY(first.m_object == this))
19837  {
19838  JSON_THROW(invalid_iterator::create(211, "passed iterators may not belong to container"));
19839  }
19840 
19841  // insert to array and return iterator
19842  return insert_iterator(pos, first.m_it.array_iterator, last.m_it.array_iterator);
19843  }
19844 
19845  /*!
19846  @brief inserts elements
19847 
19848  Inserts elements from initializer list @a ilist before iterator @a pos.
19849 
19850  @param[in] pos iterator before which the content will be inserted; may be
19851  the end() iterator
19852  @param[in] ilist initializer list to insert the values from
19853 
19854  @throw type_error.309 if called on JSON values other than arrays; example:
19855  `"cannot use insert() with string"`
19856  @throw invalid_iterator.202 if @a pos is not an iterator of *this;
19857  example: `"iterator does not fit current value"`
19858 
19859  @return iterator pointing to the first element inserted, or @a pos if
19860  `ilist` is empty
19861 
19862  @complexity Linear in `ilist.size()` plus linear in the distance between
19863  @a pos and end of the container.
19864 
19865  @liveexample{The example shows how `insert()` is used.,insert__ilist}
19866 
19867  @since version 1.0.0
19868  */
19870  {
19871  // insert only works for arrays
19872  if (JSON_HEDLEY_UNLIKELY(not is_array()))
19873  {
19874  JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
19875  }
19876 
19877  // check if iterator pos fits to this JSON value
19878  if (JSON_HEDLEY_UNLIKELY(pos.m_object != this))
19879  {
19880  JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
19881  }
19882 
19883  // insert to array and return iterator
19884  return insert_iterator(pos, ilist.begin(), ilist.end());
19885  }
19886 
19887  /*!
19888  @brief inserts elements
19889 
19890  Inserts elements from range `[first, last)`.
19891 
19892  @param[in] first begin of the range of elements to insert
19893  @param[in] last end of the range of elements to insert
19894 
19895  @throw type_error.309 if called on JSON values other than objects; example:
19896  `"cannot use insert() with string"`
19897  @throw invalid_iterator.202 if iterator @a first or @a last does does not
19898  point to an object; example: `"iterators first and last must point to
19899  objects"`
19900  @throw invalid_iterator.210 if @a first and @a last do not belong to the
19901  same JSON value; example: `"iterators do not fit"`
19902 
19903  @complexity Logarithmic: `O(N*log(size() + N))`, where `N` is the number
19904  of elements to insert.
19905 
19906  @liveexample{The example shows how `insert()` is used.,insert__range_object}
19907 
19908  @since version 3.0.0
19909  */
19911  {
19912  // insert only works for objects
19913  if (JSON_HEDLEY_UNLIKELY(not is_object()))
19914  {
19915  JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
19916  }
19917 
19918  // check if range iterators belong to the same JSON object
19919  if (JSON_HEDLEY_UNLIKELY(first.m_object != last.m_object))
19920  {
19921  JSON_THROW(invalid_iterator::create(210, "iterators do not fit"));
19922  }
19923 
19924  // passed iterators must belong to objects
19925  if (JSON_HEDLEY_UNLIKELY(not first.m_object->is_object()))
19926  {
19927  JSON_THROW(invalid_iterator::create(202, "iterators first and last must point to objects"));
19928  }
19929 
19930  m_value.object->insert(first.m_it.object_iterator, last.m_it.object_iterator);
19931  }
19932 
19933  /*!
19934  @brief updates a JSON object from another object, overwriting existing keys
19935 
19936  Inserts all values from JSON object @a j and overwrites existing keys.
19937 
19938  @param[in] j JSON object to read values from
19939 
19940  @throw type_error.312 if called on JSON values other than objects; example:
19941  `"cannot use update() with string"`
19942 
19943  @complexity O(N*log(size() + N)), where N is the number of elements to
19944  insert.
19945 
19946  @liveexample{The example shows how `update()` is used.,update}
19947 
19948  @sa https://docs.python.org/3.6/library/stdtypes.html#dict.update
19949 
19950  @since version 3.0.0
19951  */
19953  {
19954  // implicitly convert null value to an empty object
19955  if (is_null())
19956  {
19957  m_type = value_t::object;
19958  m_value.object = create<object_t>();
19959  assert_invariant();
19960  }
19961 
19962  if (JSON_HEDLEY_UNLIKELY(not is_object()))
19963  {
19964  JSON_THROW(type_error::create(312, "cannot use update() with " + std::string(type_name())));
19965  }
19966  if (JSON_HEDLEY_UNLIKELY(not j.is_object()))
19967  {
19968  JSON_THROW(type_error::create(312, "cannot use update() with " + std::string(j.type_name())));
19969  }
19970 
19971  for (auto it = j.cbegin(); it != j.cend(); ++it)
19972  {
19973  m_value.object->operator[](it.key()) = it.value();
19974  }
19975  }
19976 
19977  /*!
19978  @brief updates a JSON object from another object, overwriting existing keys
19979 
19980  Inserts all values from from range `[first, last)` and overwrites existing
19981  keys.
19982 
19983  @param[in] first begin of the range of elements to insert
19984  @param[in] last end of the range of elements to insert
19985 
19986  @throw type_error.312 if called on JSON values other than objects; example:
19987  `"cannot use update() with string"`
19988  @throw invalid_iterator.202 if iterator @a first or @a last does does not
19989  point to an object; example: `"iterators first and last must point to
19990  objects"`
19991  @throw invalid_iterator.210 if @a first and @a last do not belong to the
19992  same JSON value; example: `"iterators do not fit"`
19993 
19994  @complexity O(N*log(size() + N)), where N is the number of elements to
19995  insert.
19996 
19997  @liveexample{The example shows how `update()` is used__range.,update}
19998 
19999  @sa https://docs.python.org/3.6/library/stdtypes.html#dict.update
20000 
20001  @since version 3.0.0
20002  */
20004  {
20005  // implicitly convert null value to an empty object
20006  if (is_null())
20007  {
20008  m_type = value_t::object;
20009  m_value.object = create<object_t>();
20010  assert_invariant();
20011  }
20012 
20013  if (JSON_HEDLEY_UNLIKELY(not is_object()))
20014  {
20015  JSON_THROW(type_error::create(312, "cannot use update() with " + std::string(type_name())));
20016  }
20017 
20018  // check if range iterators belong to the same JSON object
20019  if (JSON_HEDLEY_UNLIKELY(first.m_object != last.m_object))
20020  {
20021  JSON_THROW(invalid_iterator::create(210, "iterators do not fit"));
20022  }
20023 
20024  // passed iterators must belong to objects
20025  if (JSON_HEDLEY_UNLIKELY(not first.m_object->is_object()
20026  or not last.m_object->is_object()))
20027  {
20028  JSON_THROW(invalid_iterator::create(202, "iterators first and last must point to objects"));
20029  }
20030 
20031  for (auto it = first; it != last; ++it)
20032  {
20033  m_value.object->operator[](it.key()) = it.value();
20034  }
20035  }
20036 
20037  /*!
20038  @brief exchanges the values
20039 
20040  Exchanges the contents of the JSON value with those of @a other. Does not
20041  invoke any move, copy, or swap operations on individual elements. All
20042  iterators and references remain valid. The past-the-end iterator is
20043  invalidated.
20044 
20045  @param[in,out] other JSON value to exchange the contents with
20046 
20047  @complexity Constant.
20048 
20049  @liveexample{The example below shows how JSON values can be swapped with
20050  `swap()`.,swap__reference}
20051 
20052  @since version 1.0.0
20053  */
20054  void swap(reference other) noexcept (
20059  )
20060  {
20061  std::swap(m_type, other.m_type);
20062  std::swap(m_value, other.m_value);
20063  assert_invariant();
20064  }
20065 
20066  /*!
20067  @brief exchanges the values
20068 
20069  Exchanges the contents of a JSON array with those of @a other. Does not
20070  invoke any move, copy, or swap operations on individual elements. All
20071  iterators and references remain valid. The past-the-end iterator is
20072  invalidated.
20073 
20074  @param[in,out] other array to exchange the contents with
20075 
20076  @throw type_error.310 when JSON value is not an array; example: `"cannot
20077  use swap() with string"`
20078 
20079  @complexity Constant.
20080 
20081  @liveexample{The example below shows how arrays can be swapped with
20082  `swap()`.,swap__array_t}
20083 
20084  @since version 1.0.0
20085  */
20086  void swap(array_t& other)
20087  {
20088  // swap only works for arrays
20089  if (JSON_HEDLEY_LIKELY(is_array()))
20090  {
20091  std::swap(*(m_value.array), other);
20092  }
20093  else
20094  {
20095  JSON_THROW(type_error::create(310, "cannot use swap() with " + std::string(type_name())));
20096  }
20097  }
20098 
20099  /*!
20100  @brief exchanges the values
20101 
20102  Exchanges the contents of a JSON object with those of @a other. Does not
20103  invoke any move, copy, or swap operations on individual elements. All
20104  iterators and references remain valid. The past-the-end iterator is
20105  invalidated.
20106 
20107  @param[in,out] other object to exchange the contents with
20108 
20109  @throw type_error.310 when JSON value is not an object; example:
20110  `"cannot use swap() with string"`
20111 
20112  @complexity Constant.
20113 
20114  @liveexample{The example below shows how objects can be swapped with
20115  `swap()`.,swap__object_t}
20116 
20117  @since version 1.0.0
20118  */
20119  void swap(object_t& other)
20120  {
20121  // swap only works for objects
20122  if (JSON_HEDLEY_LIKELY(is_object()))
20123  {
20124  std::swap(*(m_value.object), other);
20125  }
20126  else
20127  {
20128  JSON_THROW(type_error::create(310, "cannot use swap() with " + std::string(type_name())));
20129  }
20130  }
20131 
20132  /*!
20133  @brief exchanges the values
20134 
20135  Exchanges the contents of a JSON string with those of @a other. Does not
20136  invoke any move, copy, or swap operations on individual elements. All
20137  iterators and references remain valid. The past-the-end iterator is
20138  invalidated.
20139 
20140  @param[in,out] other string to exchange the contents with
20141 
20142  @throw type_error.310 when JSON value is not a string; example: `"cannot
20143  use swap() with boolean"`
20144 
20145  @complexity Constant.
20146 
20147  @liveexample{The example below shows how strings can be swapped with
20148  `swap()`.,swap__string_t}
20149 
20150  @since version 1.0.0
20151  */
20152  void swap(string_t& other)
20153  {
20154  // swap only works for strings
20155  if (JSON_HEDLEY_LIKELY(is_string()))
20156  {
20157  std::swap(*(m_value.string), other);
20158  }
20159  else
20160  {
20161  JSON_THROW(type_error::create(310, "cannot use swap() with " + std::string(type_name())));
20162  }
20163  }
20164 
20165  /// @}
20166 
20167  public:
20168  //////////////////////////////////////////
20169  // lexicographical comparison operators //
20170  //////////////////////////////////////////
20171 
20172  /// @name lexicographical comparison operators
20173  /// @{
20174 
20175  /*!
20176  @brief comparison: equal
20177 
20178  Compares two JSON values for equality according to the following rules:
20179  - Two JSON values are equal if (1) they are from the same type and (2)
20180  their stored values are the same according to their respective
20181  `operator==`.
20182  - Integer and floating-point numbers are automatically converted before
20183  comparison. Note than two NaN values are always treated as unequal.
20184  - Two JSON null values are equal.
20185 
20186  @note Floating-point inside JSON values numbers are compared with
20187  `json::number_float_t::operator==` which is `double::operator==` by
20188  default. To compare floating-point while respecting an epsilon, an alternative
20189  [comparison function](https://github.com/mariokonrad/marnav/blob/master/src/marnav/math/floatingpoint.hpp#L34-#L39)
20190  could be used, for instance
20191  @code {.cpp}
20192  template<typename T, typename = typename std::enable_if<std::is_floating_point<T>::value, T>::type>
20193  inline bool is_same(T a, T b, T epsilon = std::numeric_limits<T>::epsilon()) noexcept
20194  {
20195  return std::abs(a - b) <= epsilon;
20196  }
20197  @endcode
20198 
20199  @note NaN values never compare equal to themselves or to other NaN values.
20200 
20201  @param[in] lhs first JSON value to consider
20202  @param[in] rhs second JSON value to consider
20203  @return whether the values @a lhs and @a rhs are equal
20204 
20205  @exceptionsafety No-throw guarantee: this function never throws exceptions.
20206 
20207  @complexity Linear.
20208 
20209  @liveexample{The example demonstrates comparing several JSON
20210  types.,operator__equal}
20211 
20212  @since version 1.0.0
20213  */
20214  friend bool operator==(const_reference lhs, const_reference rhs) noexcept
20215  {
20216  const auto lhs_type = lhs.type();
20217  const auto rhs_type = rhs.type();
20218 
20219  if (lhs_type == rhs_type)
20220  {
20221  switch (lhs_type)
20222  {
20223  case value_t::array:
20224  return *lhs.m_value.array == *rhs.m_value.array;
20225 
20226  case value_t::object:
20227  return *lhs.m_value.object == *rhs.m_value.object;
20228 
20229  case value_t::null:
20230  return true;
20231 
20232  case value_t::string:
20233  return *lhs.m_value.string == *rhs.m_value.string;
20234 
20235  case value_t::boolean:
20236  return lhs.m_value.boolean == rhs.m_value.boolean;
20237 
20238  case value_t::number_integer:
20239  return lhs.m_value.number_integer == rhs.m_value.number_integer;
20240 
20241  case value_t::number_unsigned:
20242  return lhs.m_value.number_unsigned == rhs.m_value.number_unsigned;
20243 
20244  case value_t::number_float:
20245  return lhs.m_value.number_float == rhs.m_value.number_float;
20246 
20247  default:
20248  return false;
20249  }
20250  }
20251  else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_float)
20252  {
20253  return static_cast<number_float_t>(lhs.m_value.number_integer) == rhs.m_value.number_float;
20254  }
20255  else if (lhs_type == value_t::number_float and rhs_type == value_t::number_integer)
20256  {
20257  return lhs.m_value.number_float == static_cast<number_float_t>(rhs.m_value.number_integer);
20258  }
20259  else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_float)
20260  {
20261  return static_cast<number_float_t>(lhs.m_value.number_unsigned) == rhs.m_value.number_float;
20262  }
20263  else if (lhs_type == value_t::number_float and rhs_type == value_t::number_unsigned)
20264  {
20265  return lhs.m_value.number_float == static_cast<number_float_t>(rhs.m_value.number_unsigned);
20266  }
20267  else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_integer)
20268  {
20269  return static_cast<number_integer_t>(lhs.m_value.number_unsigned) == rhs.m_value.number_integer;
20270  }
20271  else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_unsigned)
20272  {
20273  return lhs.m_value.number_integer == static_cast<number_integer_t>(rhs.m_value.number_unsigned);
20274  }
20275 
20276  return false;
20277  }
20278 
20279  /*!
20280  @brief comparison: equal
20281  @copydoc operator==(const_reference, const_reference)
20282  */
20283  template<typename ScalarType, typename std::enable_if<
20285  friend bool operator==(const_reference lhs, const ScalarType rhs) noexcept
20286  {
20287  return lhs == basic_json(rhs);
20288  }
20289 
20290  /*!
20291  @brief comparison: equal
20292  @copydoc operator==(const_reference, const_reference)
20293  */
20294  template<typename ScalarType, typename std::enable_if<
20296  friend bool operator==(const ScalarType lhs, const_reference rhs) noexcept
20297  {
20298  return basic_json(lhs) == rhs;
20299  }
20300 
20301  /*!
20302  @brief comparison: not equal
20303 
20304  Compares two JSON values for inequality by calculating `not (lhs == rhs)`.
20305 
20306  @param[in] lhs first JSON value to consider
20307  @param[in] rhs second JSON value to consider
20308  @return whether the values @a lhs and @a rhs are not equal
20309 
20310  @complexity Linear.
20311 
20312  @exceptionsafety No-throw guarantee: this function never throws exceptions.
20313 
20314  @liveexample{The example demonstrates comparing several JSON
20315  types.,operator__notequal}
20316 
20317  @since version 1.0.0
20318  */
20319  friend bool operator!=(const_reference lhs, const_reference rhs) noexcept
20320  {
20321  return not (lhs == rhs);
20322  }
20323 
20324  /*!
20325  @brief comparison: not equal
20326  @copydoc operator!=(const_reference, const_reference)
20327  */
20328  template<typename ScalarType, typename std::enable_if<
20330  friend bool operator!=(const_reference lhs, const ScalarType rhs) noexcept
20331  {
20332  return lhs != basic_json(rhs);
20333  }
20334 
20335  /*!
20336  @brief comparison: not equal
20337  @copydoc operator!=(const_reference, const_reference)
20338  */
20339  template<typename ScalarType, typename std::enable_if<
20341  friend bool operator!=(const ScalarType lhs, const_reference rhs) noexcept
20342  {
20343  return basic_json(lhs) != rhs;
20344  }
20345 
20346  /*!
20347  @brief comparison: less than
20348 
20349  Compares whether one JSON value @a lhs is less than another JSON value @a
20350  rhs according to the following rules:
20351  - If @a lhs and @a rhs have the same type, the values are compared using
20352  the default `<` operator.
20353  - Integer and floating-point numbers are automatically converted before
20354  comparison
20355  - In case @a lhs and @a rhs have different types, the values are ignored
20356  and the order of the types is considered, see
20357  @ref operator<(const value_t, const value_t).
20358 
20359  @param[in] lhs first JSON value to consider
20360  @param[in] rhs second JSON value to consider
20361  @return whether @a lhs is less than @a rhs
20362 
20363  @complexity Linear.
20364 
20365  @exceptionsafety No-throw guarantee: this function never throws exceptions.
20366 
20367  @liveexample{The example demonstrates comparing several JSON
20368  types.,operator__less}
20369 
20370  @since version 1.0.0
20371  */
20372  friend bool operator<(const_reference lhs, const_reference rhs) noexcept
20373  {
20374  const auto lhs_type = lhs.type();
20375  const auto rhs_type = rhs.type();
20376 
20377  if (lhs_type == rhs_type)
20378  {
20379  switch (lhs_type)
20380  {
20381  case value_t::array:
20382  // note parentheses are necessary, see
20383  // https://github.com/nlohmann/json/issues/1530
20384  return (*lhs.m_value.array) < (*rhs.m_value.array);
20385 
20386  case value_t::object:
20387  return (*lhs.m_value.object) < (*rhs.m_value.object);
20388 
20389  case value_t::null:
20390  return false;
20391 
20392  case value_t::string:
20393  return (*lhs.m_value.string) < (*rhs.m_value.string);
20394 
20395  case value_t::boolean:
20396  return (lhs.m_value.boolean) < (rhs.m_value.boolean);
20397 
20398  case value_t::number_integer:
20399  return (lhs.m_value.number_integer) < (rhs.m_value.number_integer);
20400 
20401  case value_t::number_unsigned:
20402  return (lhs.m_value.number_unsigned) < (rhs.m_value.number_unsigned);
20403 
20404  case value_t::number_float:
20405  return (lhs.m_value.number_float) < (rhs.m_value.number_float);
20406 
20407  default:
20408  return false;
20409  }
20410  }
20411  else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_float)
20412  {
20413  return static_cast<number_float_t>(lhs.m_value.number_integer) < rhs.m_value.number_float;
20414  }
20415  else if (lhs_type == value_t::number_float and rhs_type == value_t::number_integer)
20416  {
20417  return lhs.m_value.number_float < static_cast<number_float_t>(rhs.m_value.number_integer);
20418  }
20419  else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_float)
20420  {
20421  return static_cast<number_float_t>(lhs.m_value.number_unsigned) < rhs.m_value.number_float;
20422  }
20423  else if (lhs_type == value_t::number_float and rhs_type == value_t::number_unsigned)
20424  {
20425  return lhs.m_value.number_float < static_cast<number_float_t>(rhs.m_value.number_unsigned);
20426  }
20427  else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_unsigned)
20428  {
20429  return lhs.m_value.number_integer < static_cast<number_integer_t>(rhs.m_value.number_unsigned);
20430  }
20431  else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_integer)
20432  {
20433  return static_cast<number_integer_t>(lhs.m_value.number_unsigned) < rhs.m_value.number_integer;
20434  }
20435 
20436  // We only reach this line if we cannot compare values. In that case,
20437  // we compare types. Note we have to call the operator explicitly,
20438  // because MSVC has problems otherwise.
20439  return operator<(lhs_type, rhs_type);
20440  }
20441 
20442  /*!
20443  @brief comparison: less than
20444  @copydoc operator<(const_reference, const_reference)
20445  */
20446  template<typename ScalarType, typename std::enable_if<
20448  friend bool operator<(const_reference lhs, const ScalarType rhs) noexcept
20449  {
20450  return lhs < basic_json(rhs);
20451  }
20452 
20453  /*!
20454  @brief comparison: less than
20455  @copydoc operator<(const_reference, const_reference)
20456  */
20457  template<typename ScalarType, typename std::enable_if<
20459  friend bool operator<(const ScalarType lhs, const_reference rhs) noexcept
20460  {
20461  return basic_json(lhs) < rhs;
20462  }
20463 
20464  /*!
20465  @brief comparison: less than or equal
20466 
20467  Compares whether one JSON value @a lhs is less than or equal to another
20468  JSON value by calculating `not (rhs < lhs)`.
20469 
20470  @param[in] lhs first JSON value to consider
20471  @param[in] rhs second JSON value to consider
20472  @return whether @a lhs is less than or equal to @a rhs
20473 
20474  @complexity Linear.
20475 
20476  @exceptionsafety No-throw guarantee: this function never throws exceptions.
20477 
20478  @liveexample{The example demonstrates comparing several JSON
20479  types.,operator__greater}
20480 
20481  @since version 1.0.0
20482  */
20483  friend bool operator<=(const_reference lhs, const_reference rhs) noexcept
20484  {
20485  return not (rhs < lhs);
20486  }
20487 
20488  /*!
20489  @brief comparison: less than or equal
20490  @copydoc operator<=(const_reference, const_reference)
20491  */
20492  template<typename ScalarType, typename std::enable_if<
20494  friend bool operator<=(const_reference lhs, const ScalarType rhs) noexcept
20495  {
20496  return lhs <= basic_json(rhs);
20497  }
20498 
20499  /*!
20500  @brief comparison: less than or equal
20501  @copydoc operator<=(const_reference, const_reference)
20502  */
20503  template<typename ScalarType, typename std::enable_if<
20505  friend bool operator<=(const ScalarType lhs, const_reference rhs) noexcept
20506  {
20507  return basic_json(lhs) <= rhs;
20508  }
20509 
20510  /*!
20511  @brief comparison: greater than
20512 
20513  Compares whether one JSON value @a lhs is greater than another
20514  JSON value by calculating `not (lhs <= rhs)`.
20515 
20516  @param[in] lhs first JSON value to consider
20517  @param[in] rhs second JSON value to consider
20518  @return whether @a lhs is greater than to @a rhs
20519 
20520  @complexity Linear.
20521 
20522  @exceptionsafety No-throw guarantee: this function never throws exceptions.
20523 
20524  @liveexample{The example demonstrates comparing several JSON
20525  types.,operator__lessequal}
20526 
20527  @since version 1.0.0
20528  */
20529  friend bool operator>(const_reference lhs, const_reference rhs) noexcept
20530  {
20531  return not (lhs <= rhs);
20532  }
20533 
20534  /*!
20535  @brief comparison: greater than
20536  @copydoc operator>(const_reference, const_reference)
20537  */
20538  template<typename ScalarType, typename std::enable_if<
20540  friend bool operator>(const_reference lhs, const ScalarType rhs) noexcept
20541  {
20542  return lhs > basic_json(rhs);
20543  }
20544 
20545  /*!
20546  @brief comparison: greater than
20547  @copydoc operator>(const_reference, const_reference)
20548  */
20549  template<typename ScalarType, typename std::enable_if<
20551  friend bool operator>(const ScalarType lhs, const_reference rhs) noexcept
20552  {
20553  return basic_json(lhs) > rhs;
20554  }
20555 
20556  /*!
20557  @brief comparison: greater than or equal
20558 
20559  Compares whether one JSON value @a lhs is greater than or equal to another
20560  JSON value by calculating `not (lhs < rhs)`.
20561 
20562  @param[in] lhs first JSON value to consider
20563  @param[in] rhs second JSON value to consider
20564  @return whether @a lhs is greater than or equal to @a rhs
20565 
20566  @complexity Linear.
20567 
20568  @exceptionsafety No-throw guarantee: this function never throws exceptions.
20569 
20570  @liveexample{The example demonstrates comparing several JSON
20571  types.,operator__greaterequal}
20572 
20573  @since version 1.0.0
20574  */
20575  friend bool operator>=(const_reference lhs, const_reference rhs) noexcept
20576  {
20577  return not (lhs < rhs);
20578  }
20579 
20580  /*!
20581  @brief comparison: greater than or equal
20582  @copydoc operator>=(const_reference, const_reference)
20583  */
20584  template<typename ScalarType, typename std::enable_if<
20586  friend bool operator>=(const_reference lhs, const ScalarType rhs) noexcept
20587  {
20588  return lhs >= basic_json(rhs);
20589  }
20590 
20591  /*!
20592  @brief comparison: greater than or equal
20593  @copydoc operator>=(const_reference, const_reference)
20594  */
20595  template<typename ScalarType, typename std::enable_if<
20597  friend bool operator>=(const ScalarType lhs, const_reference rhs) noexcept
20598  {
20599  return basic_json(lhs) >= rhs;
20600  }
20601 
20602  /// @}
20603 
20604  ///////////////////
20605  // serialization //
20606  ///////////////////
20607 
20608  /// @name serialization
20609  /// @{
20610 
20611  /*!
20612  @brief serialize to stream
20613 
20614  Serialize the given JSON value @a j to the output stream @a o. The JSON
20615  value will be serialized using the @ref dump member function.
20616 
20617  - The indentation of the output can be controlled with the member variable
20618  `width` of the output stream @a o. For instance, using the manipulator
20619  `std::setw(4)` on @a o sets the indentation level to `4` and the
20620  serialization result is the same as calling `dump(4)`.
20621 
20622  - The indentation character can be controlled with the member variable
20623  `fill` of the output stream @a o. For instance, the manipulator
20624  `std::setfill('\\t')` sets indentation to use a tab character rather than
20625  the default space character.
20626 
20627  @param[in,out] o stream to serialize to
20628  @param[in] j JSON value to serialize
20629 
20630  @return the stream @a o
20631 
20632  @throw type_error.316 if a string stored inside the JSON value is not
20633  UTF-8 encoded
20634 
20635  @complexity Linear.
20636 
20637  @liveexample{The example below shows the serialization with different
20638  parameters to `width` to adjust the indentation level.,operator_serialize}
20639 
20640  @since version 1.0.0; indentation character added in version 3.0.0
20641  */
20642  friend std::ostream& operator<<(std::ostream& o, const basic_json& j)
20643  {
20644  // read width member and use it as indentation parameter if nonzero
20645  const bool pretty_print = o.width() > 0;
20646  const auto indentation = pretty_print ? o.width() : 0;
20647 
20648  // reset width to 0 for subsequent calls to this stream
20649  o.width(0);
20650 
20651  // do the actual serialization
20653  s.dump(j, pretty_print, false, static_cast<unsigned int>(indentation));
20654  return o;
20655  }
20656 
20657  /*!
20658  @brief serialize to stream
20659  @deprecated This stream operator is deprecated and will be removed in
20660  future 4.0.0 of the library. Please use
20661  @ref operator<<(std::ostream&, const basic_json&)
20662  instead; that is, replace calls like `j >> o;` with `o << j;`.
20663  @since version 1.0.0; deprecated since version 3.0.0
20664  */
20665  JSON_HEDLEY_DEPRECATED(3.0.0)
20666  friend std::ostream& operator>>(const basic_json& j, std::ostream& o)
20667  {
20668  return o << j;
20669  }
20670 
20671  /// @}
20672 
20673 
20674  /////////////////////
20675  // deserialization //
20676  /////////////////////
20677 
20678  /// @name deserialization
20679  /// @{
20680 
20681  /*!
20682  @brief deserialize from a compatible input
20683 
20684  This function reads from a compatible input. Examples are:
20685  - an array of 1-byte values
20686  - strings with character/literal type with size of 1 byte
20687  - input streams
20688  - container with contiguous storage of 1-byte values. Compatible container
20689  types include `std::vector`, `std::string`, `std::array`,
20690  `std::valarray`, and `std::initializer_list`. Furthermore, C-style
20691  arrays can be used with `std::begin()`/`std::end()`. User-defined
20692  containers can be used as long as they implement random-access iterators
20693  and a contiguous storage.
20694 
20695  @pre Each element of the container has a size of 1 byte. Violating this
20696  precondition yields undefined behavior. **This precondition is enforced
20697  with a static assertion.**
20698 
20699  @pre The container storage is contiguous. Violating this precondition
20700  yields undefined behavior. **This precondition is enforced with an
20701  assertion.**
20702 
20703  @warning There is no way to enforce all preconditions at compile-time. If
20704  the function is called with a noncompliant container and with
20705  assertions switched off, the behavior is undefined and will most
20706  likely yield segmentation violation.
20707 
20708  @param[in] i input to read from
20709  @param[in] cb a parser callback function of type @ref parser_callback_t
20710  which is used to control the deserialization by filtering unwanted values
20711  (optional)
20712  @param[in] allow_exceptions whether to throw exceptions in case of a
20713  parse error (optional, true by default)
20714 
20715  @return deserialized JSON value; in case of a parse error and
20716  @a allow_exceptions set to `false`, the return value will be
20717  value_t::discarded.
20718 
20719  @throw parse_error.101 if a parse error occurs; example: `""unexpected end
20720  of input; expected string literal""`
20721  @throw parse_error.102 if to_unicode fails or surrogate error
20722  @throw parse_error.103 if to_unicode fails
20723 
20724  @complexity Linear in the length of the input. The parser is a predictive
20725  LL(1) parser. The complexity can be higher if the parser callback function
20726  @a cb has a super-linear complexity.
20727 
20728  @note A UTF-8 byte order mark is silently ignored.
20729 
20730  @liveexample{The example below demonstrates the `parse()` function reading
20731  from an array.,parse__array__parser_callback_t}
20732 
20733  @liveexample{The example below demonstrates the `parse()` function with
20734  and without callback function.,parse__string__parser_callback_t}
20735 
20736  @liveexample{The example below demonstrates the `parse()` function with
20737  and without callback function.,parse__istream__parser_callback_t}
20738 
20739  @liveexample{The example below demonstrates the `parse()` function reading
20740  from a contiguous container.,parse__contiguouscontainer__parser_callback_t}
20741 
20742  @since version 2.0.3 (contiguous containers)
20743  */
20746  const parser_callback_t cb = nullptr,
20747  const bool allow_exceptions = true)
20748  {
20749  basic_json result;
20750  parser(i, cb, allow_exceptions).parse(true, result);
20751  return result;
20752  }
20753 
20755  {
20756  return parser(i).accept(true);
20757  }
20758 
20759  /*!
20760  @brief generate SAX events
20761 
20762  The SAX event lister must follow the interface of @ref json_sax.
20763 
20764  This function reads from a compatible input. Examples are:
20765  - an array of 1-byte values
20766  - strings with character/literal type with size of 1 byte
20767  - input streams
20768  - container with contiguous storage of 1-byte values. Compatible container
20769  types include `std::vector`, `std::string`, `std::array`,
20770  `std::valarray`, and `std::initializer_list`. Furthermore, C-style
20771  arrays can be used with `std::begin()`/`std::end()`. User-defined
20772  containers can be used as long as they implement random-access iterators
20773  and a contiguous storage.
20774 
20775  @pre Each element of the container has a size of 1 byte. Violating this
20776  precondition yields undefined behavior. **This precondition is enforced
20777  with a static assertion.**
20778 
20779  @pre The container storage is contiguous. Violating this precondition
20780  yields undefined behavior. **This precondition is enforced with an
20781  assertion.**
20782 
20783  @warning There is no way to enforce all preconditions at compile-time. If
20784  the function is called with a noncompliant container and with
20785  assertions switched off, the behavior is undefined and will most
20786  likely yield segmentation violation.
20787 
20788  @param[in] i input to read from
20789  @param[in,out] sax SAX event listener
20790  @param[in] format the format to parse (JSON, CBOR, MessagePack, or UBJSON)
20791  @param[in] strict whether the input has to be consumed completely
20792 
20793  @return return value of the last processed SAX event
20794 
20795  @throw parse_error.101 if a parse error occurs; example: `""unexpected end
20796  of input; expected string literal""`
20797  @throw parse_error.102 if to_unicode fails or surrogate error
20798  @throw parse_error.103 if to_unicode fails
20799 
20800  @complexity Linear in the length of the input. The parser is a predictive
20801  LL(1) parser. The complexity can be higher if the SAX consumer @a sax has
20802  a super-linear complexity.
20803 
20804  @note A UTF-8 byte order mark is silently ignored.
20805 
20806  @liveexample{The example below demonstrates the `sax_parse()` function
20807  reading from string and processing the events with a user-defined SAX
20808  event consumer.,sax_parse}
20809 
20810  @since version 3.2.0
20811  */
20812  template <typename SAX>
20814  static bool sax_parse(detail::input_adapter&& i, SAX* sax,
20816  const bool strict = true)
20817  {
20818  assert(sax);
20819  return format == input_format_t::json
20820  ? parser(std::move(i)).sax_parse(sax, strict)
20821  : detail::binary_reader<basic_json, SAX>(std::move(i)).sax_parse(format, sax, strict);
20822  }
20823 
20824  /*!
20825  @brief deserialize from an iterator range with contiguous storage
20826 
20827  This function reads from an iterator range of a container with contiguous
20828  storage of 1-byte values. Compatible container types include
20829  `std::vector`, `std::string`, `std::array`, `std::valarray`, and
20830  `std::initializer_list`. Furthermore, C-style arrays can be used with
20831  `std::begin()`/`std::end()`. User-defined containers can be used as long
20832  as they implement random-access iterators and a contiguous storage.
20833 
20834  @pre The iterator range is contiguous. Violating this precondition yields
20835  undefined behavior. **This precondition is enforced with an assertion.**
20836  @pre Each element in the range has a size of 1 byte. Violating this
20837  precondition yields undefined behavior. **This precondition is enforced
20838  with a static assertion.**
20839 
20840  @warning There is no way to enforce all preconditions at compile-time. If
20841  the function is called with noncompliant iterators and with
20842  assertions switched off, the behavior is undefined and will most
20843  likely yield segmentation violation.
20844 
20845  @tparam IteratorType iterator of container with contiguous storage
20846  @param[in] first begin of the range to parse (included)
20847  @param[in] last end of the range to parse (excluded)
20848  @param[in] cb a parser callback function of type @ref parser_callback_t
20849  which is used to control the deserialization by filtering unwanted values
20850  (optional)
20851  @param[in] allow_exceptions whether to throw exceptions in case of a
20852  parse error (optional, true by default)
20853 
20854  @return deserialized JSON value; in case of a parse error and
20855  @a allow_exceptions set to `false`, the return value will be
20856  value_t::discarded.
20857 
20858  @throw parse_error.101 in case of an unexpected token
20859  @throw parse_error.102 if to_unicode fails or surrogate error
20860  @throw parse_error.103 if to_unicode fails
20861 
20862  @complexity Linear in the length of the input. The parser is a predictive
20863  LL(1) parser. The complexity can be higher if the parser callback function
20864  @a cb has a super-linear complexity.
20865 
20866  @note A UTF-8 byte order mark is silently ignored.
20867 
20868  @liveexample{The example below demonstrates the `parse()` function reading
20869  from an iterator range.,parse__iteratortype__parser_callback_t}
20870 
20871  @since version 2.0.3
20872  */
20873  template<class IteratorType, typename std::enable_if<
20874  std::is_base_of<
20875  std::random_access_iterator_tag,
20876  typename std::iterator_traits<IteratorType>::iterator_category>::value, int>::type = 0>
20877  static basic_json parse(IteratorType first, IteratorType last,
20878  const parser_callback_t cb = nullptr,
20879  const bool allow_exceptions = true)
20880  {
20881  basic_json result;
20882  parser(detail::input_adapter(first, last), cb, allow_exceptions).parse(true, result);
20883  return result;
20884  }
20885 
20886  template<class IteratorType, typename std::enable_if<
20887  std::is_base_of<
20888  std::random_access_iterator_tag,
20889  typename std::iterator_traits<IteratorType>::iterator_category>::value, int>::type = 0>
20890  static bool accept(IteratorType first, IteratorType last)
20891  {
20892  return parser(detail::input_adapter(first, last)).accept(true);
20893  }
20894 
20895  template<class IteratorType, class SAX, typename std::enable_if<
20896  std::is_base_of<
20897  std::random_access_iterator_tag,
20898  typename std::iterator_traits<IteratorType>::iterator_category>::value, int>::type = 0>
20900  static bool sax_parse(IteratorType first, IteratorType last, SAX* sax)
20901  {
20902  return parser(detail::input_adapter(first, last)).sax_parse(sax);
20903  }
20904 
20905  /*!
20906  @brief deserialize from stream
20907  @deprecated This stream operator is deprecated and will be removed in
20908  version 4.0.0 of the library. Please use
20909  @ref operator>>(std::istream&, basic_json&)
20910  instead; that is, replace calls like `j << i;` with `i >> j;`.
20911  @since version 1.0.0; deprecated since version 3.0.0
20912  */
20913  JSON_HEDLEY_DEPRECATED(3.0.0)
20914  friend std::istream& operator<<(basic_json& j, std::istream& i)
20915  {
20916  return operator>>(i, j);
20917  }
20918 
20919  /*!
20920  @brief deserialize from stream
20921 
20922  Deserializes an input stream to a JSON value.
20923 
20924  @param[in,out] i input stream to read a serialized JSON value from
20925  @param[in,out] j JSON value to write the deserialized input to
20926 
20927  @throw parse_error.101 in case of an unexpected token
20928  @throw parse_error.102 if to_unicode fails or surrogate error
20929  @throw parse_error.103 if to_unicode fails
20930 
20931  @complexity Linear in the length of the input. The parser is a predictive
20932  LL(1) parser.
20933 
20934  @note A UTF-8 byte order mark is silently ignored.
20935 
20936  @liveexample{The example below shows how a JSON value is constructed by
20937  reading a serialization from a stream.,operator_deserialize}
20938 
20939  @sa parse(std::istream&, const parser_callback_t) for a variant with a
20940  parser callback function to filter values while parsing
20941 
20942  @since version 1.0.0
20943  */
20944  friend std::istream& operator>>(std::istream& i, basic_json& j)
20945  {
20946  parser(detail::input_adapter(i)).parse(false, j);
20947  return i;
20948  }
20949 
20950  /// @}
20951 
20952  ///////////////////////////
20953  // convenience functions //
20954  ///////////////////////////
20955 
20956  /*!
20957  @brief return the type as string
20958 
20959  Returns the type name as string to be used in error messages - usually to
20960  indicate that a function was called on a wrong JSON type.
20961 
20962  @return a string representation of a the @a m_type member:
20963  Value type | return value
20964  ----------- | -------------
20965  null | `"null"`
20966  boolean | `"boolean"`
20967  string | `"string"`
20968  number | `"number"` (for all number types)
20969  object | `"object"`
20970  array | `"array"`
20971  discarded | `"discarded"`
20972 
20973  @exceptionsafety No-throw guarantee: this function never throws exceptions.
20974 
20975  @complexity Constant.
20976 
20977  @liveexample{The following code exemplifies `type_name()` for all JSON
20978  types.,type_name}
20979 
20980  @sa @ref type() -- return the type of the JSON value
20981  @sa @ref operator value_t() -- return the type of the JSON value (implicit)
20982 
20983  @since version 1.0.0, public since 2.1.0, `const char*` and `noexcept`
20984  since 3.0.0
20985  */
20987  const char* type_name() const noexcept
20988  {
20989  {
20990  switch (m_type)
20991  {
20992  case value_t::null:
20993  return "null";
20994  case value_t::object:
20995  return "object";
20996  case value_t::array:
20997  return "array";
20998  case value_t::string:
20999  return "string";
21000  case value_t::boolean:
21001  return "boolean";
21002  case value_t::discarded:
21003  return "discarded";
21004  default:
21005  return "number";
21006  }
21007  }
21008  }
21009 
21010 
21011  private:
21012  //////////////////////
21013  // member variables //
21014  //////////////////////
21015 
21016  /// the type of the current element
21018 
21019  /// the value of the current element
21020  json_value m_value = {};
21021 
21022  //////////////////////////////////////////
21023  // binary serialization/deserialization //
21024  //////////////////////////////////////////
21025 
21026  /// @name binary serialization/deserialization support
21027  /// @{
21028 
21029  public:
21030  /*!
21031  @brief create a CBOR serialization of a given JSON value
21032 
21033  Serializes a given JSON value @a j to a byte vector using the CBOR (Concise
21034  Binary Object Representation) serialization format. CBOR is a binary
21035  serialization format which aims to be more compact than JSON itself, yet
21036  more efficient to parse.
21037 
21038  The library uses the following mapping from JSON values types to
21039  CBOR types according to the CBOR specification (RFC 7049):
21040 
21041  JSON value type | value/range | CBOR type | first byte
21042  --------------- | ------------------------------------------ | ---------------------------------- | ---------------
21043  null | `null` | Null | 0xF6
21044  boolean | `true` | True | 0xF5
21045  boolean | `false` | False | 0xF4
21046  number_integer | -9223372036854775808..-2147483649 | Negative integer (8 bytes follow) | 0x3B
21047  number_integer | -2147483648..-32769 | Negative integer (4 bytes follow) | 0x3A
21048  number_integer | -32768..-129 | Negative integer (2 bytes follow) | 0x39
21049  number_integer | -128..-25 | Negative integer (1 byte follow) | 0x38
21050  number_integer | -24..-1 | Negative integer | 0x20..0x37
21051  number_integer | 0..23 | Integer | 0x00..0x17
21052  number_integer | 24..255 | Unsigned integer (1 byte follow) | 0x18
21053  number_integer | 256..65535 | Unsigned integer (2 bytes follow) | 0x19
21054  number_integer | 65536..4294967295 | Unsigned integer (4 bytes follow) | 0x1A
21055  number_integer | 4294967296..18446744073709551615 | Unsigned integer (8 bytes follow) | 0x1B
21056  number_unsigned | 0..23 | Integer | 0x00..0x17
21057  number_unsigned | 24..255 | Unsigned integer (1 byte follow) | 0x18
21058  number_unsigned | 256..65535 | Unsigned integer (2 bytes follow) | 0x19
21059  number_unsigned | 65536..4294967295 | Unsigned integer (4 bytes follow) | 0x1A
21060  number_unsigned | 4294967296..18446744073709551615 | Unsigned integer (8 bytes follow) | 0x1B
21061  number_float | *any value* | Double-Precision Float | 0xFB
21062  string | *length*: 0..23 | UTF-8 string | 0x60..0x77
21063  string | *length*: 23..255 | UTF-8 string (1 byte follow) | 0x78
21064  string | *length*: 256..65535 | UTF-8 string (2 bytes follow) | 0x79
21065  string | *length*: 65536..4294967295 | UTF-8 string (4 bytes follow) | 0x7A
21066  string | *length*: 4294967296..18446744073709551615 | UTF-8 string (8 bytes follow) | 0x7B
21067  array | *size*: 0..23 | array | 0x80..0x97
21068  array | *size*: 23..255 | array (1 byte follow) | 0x98
21069  array | *size*: 256..65535 | array (2 bytes follow) | 0x99
21070  array | *size*: 65536..4294967295 | array (4 bytes follow) | 0x9A
21071  array | *size*: 4294967296..18446744073709551615 | array (8 bytes follow) | 0x9B
21072  object | *size*: 0..23 | map | 0xA0..0xB7
21073  object | *size*: 23..255 | map (1 byte follow) | 0xB8
21074  object | *size*: 256..65535 | map (2 bytes follow) | 0xB9
21075  object | *size*: 65536..4294967295 | map (4 bytes follow) | 0xBA
21076  object | *size*: 4294967296..18446744073709551615 | map (8 bytes follow) | 0xBB
21077 
21078  @note The mapping is **complete** in the sense that any JSON value type
21079  can be converted to a CBOR value.
21080 
21081  @note If NaN or Infinity are stored inside a JSON number, they are
21082  serialized properly. This behavior differs from the @ref dump()
21083  function which serializes NaN or Infinity to `null`.
21084 
21085  @note The following CBOR types are not used in the conversion:
21086  - byte strings (0x40..0x5F)
21087  - UTF-8 strings terminated by "break" (0x7F)
21088  - arrays terminated by "break" (0x9F)
21089  - maps terminated by "break" (0xBF)
21090  - date/time (0xC0..0xC1)
21091  - bignum (0xC2..0xC3)
21092  - decimal fraction (0xC4)
21093  - bigfloat (0xC5)
21094  - tagged items (0xC6..0xD4, 0xD8..0xDB)
21095  - expected conversions (0xD5..0xD7)
21096  - simple values (0xE0..0xF3, 0xF8)
21097  - undefined (0xF7)
21098  - half and single-precision floats (0xF9-0xFA)
21099  - break (0xFF)
21100 
21101  @param[in] j JSON value to serialize
21102  @return MessagePack serialization as byte vector
21103 
21104  @complexity Linear in the size of the JSON value @a j.
21105 
21106  @liveexample{The example shows the serialization of a JSON value to a byte
21107  vector in CBOR format.,to_cbor}
21108 
21109  @sa http://cbor.io
21110  @sa @ref from_cbor(detail::input_adapter&&, const bool, const bool) for the
21111  analogous deserialization
21112  @sa @ref to_msgpack(const basic_json&) for the related MessagePack format
21113  @sa @ref to_ubjson(const basic_json&, const bool, const bool) for the
21114  related UBJSON format
21115 
21116  @since version 2.0.9
21117  */
21118  static std::vector<uint8_t> to_cbor(const basic_json& j)
21119  {
21120  std::vector<uint8_t> result;
21121  to_cbor(j, result);
21122  return result;
21123  }
21124 
21126  {
21127  binary_writer<uint8_t>(o).write_cbor(j);
21128  }
21129 
21131  {
21132  binary_writer<char>(o).write_cbor(j);
21133  }
21134 
21135  /*!
21136  @brief create a MessagePack serialization of a given JSON value
21137 
21138  Serializes a given JSON value @a j to a byte vector using the MessagePack
21139  serialization format. MessagePack is a binary serialization format which
21140  aims to be more compact than JSON itself, yet more efficient to parse.
21141 
21142  The library uses the following mapping from JSON values types to
21143  MessagePack types according to the MessagePack specification:
21144 
21145  JSON value type | value/range | MessagePack type | first byte
21146  --------------- | --------------------------------- | ---------------- | ----------
21147  null | `null` | nil | 0xC0
21148  boolean | `true` | true | 0xC3
21149  boolean | `false` | false | 0xC2
21150  number_integer | -9223372036854775808..-2147483649 | int64 | 0xD3
21151  number_integer | -2147483648..-32769 | int32 | 0xD2
21152  number_integer | -32768..-129 | int16 | 0xD1
21153  number_integer | -128..-33 | int8 | 0xD0
21154  number_integer | -32..-1 | negative fixint | 0xE0..0xFF
21155  number_integer | 0..127 | positive fixint | 0x00..0x7F
21156  number_integer | 128..255 | uint 8 | 0xCC
21157  number_integer | 256..65535 | uint 16 | 0xCD
21158  number_integer | 65536..4294967295 | uint 32 | 0xCE
21159  number_integer | 4294967296..18446744073709551615 | uint 64 | 0xCF
21160  number_unsigned | 0..127 | positive fixint | 0x00..0x7F
21161  number_unsigned | 128..255 | uint 8 | 0xCC
21162  number_unsigned | 256..65535 | uint 16 | 0xCD
21163  number_unsigned | 65536..4294967295 | uint 32 | 0xCE
21164  number_unsigned | 4294967296..18446744073709551615 | uint 64 | 0xCF
21165  number_float | *any value* | float 64 | 0xCB
21166  string | *length*: 0..31 | fixstr | 0xA0..0xBF
21167  string | *length*: 32..255 | str 8 | 0xD9
21168  string | *length*: 256..65535 | str 16 | 0xDA
21169  string | *length*: 65536..4294967295 | str 32 | 0xDB
21170  array | *size*: 0..15 | fixarray | 0x90..0x9F
21171  array | *size*: 16..65535 | array 16 | 0xDC
21172  array | *size*: 65536..4294967295 | array 32 | 0xDD
21173  object | *size*: 0..15 | fix map | 0x80..0x8F
21174  object | *size*: 16..65535 | map 16 | 0xDE
21175  object | *size*: 65536..4294967295 | map 32 | 0xDF
21176 
21177  @note The mapping is **complete** in the sense that any JSON value type
21178  can be converted to a MessagePack value.
21179 
21180  @note The following values can **not** be converted to a MessagePack value:
21181  - strings with more than 4294967295 bytes
21182  - arrays with more than 4294967295 elements
21183  - objects with more than 4294967295 elements
21184 
21185  @note The following MessagePack types are not used in the conversion:
21186  - bin 8 - bin 32 (0xC4..0xC6)
21187  - ext 8 - ext 32 (0xC7..0xC9)
21188  - float 32 (0xCA)
21189  - fixext 1 - fixext 16 (0xD4..0xD8)
21190 
21191  @note Any MessagePack output created @ref to_msgpack can be successfully
21192  parsed by @ref from_msgpack.
21193 
21194  @note If NaN or Infinity are stored inside a JSON number, they are
21195  serialized properly. This behavior differs from the @ref dump()
21196  function which serializes NaN or Infinity to `null`.
21197 
21198  @param[in] j JSON value to serialize
21199  @return MessagePack serialization as byte vector
21200 
21201  @complexity Linear in the size of the JSON value @a j.
21202 
21203  @liveexample{The example shows the serialization of a JSON value to a byte
21204  vector in MessagePack format.,to_msgpack}
21205 
21206  @sa http://msgpack.org
21207  @sa @ref from_msgpack for the analogous deserialization
21208  @sa @ref to_cbor(const basic_json& for the related CBOR format
21209  @sa @ref to_ubjson(const basic_json&, const bool, const bool) for the
21210  related UBJSON format
21211 
21212  @since version 2.0.9
21213  */
21214  static std::vector<uint8_t> to_msgpack(const basic_json& j)
21215  {
21216  std::vector<uint8_t> result;
21217  to_msgpack(j, result);
21218  return result;
21219  }
21220 
21222  {
21223  binary_writer<uint8_t>(o).write_msgpack(j);
21224  }
21225 
21227  {
21228  binary_writer<char>(o).write_msgpack(j);
21229  }
21230 
21231  /*!
21232  @brief create a UBJSON serialization of a given JSON value
21233 
21234  Serializes a given JSON value @a j to a byte vector using the UBJSON
21235  (Universal Binary JSON) serialization format. UBJSON aims to be more compact
21236  than JSON itself, yet more efficient to parse.
21237 
21238  The library uses the following mapping from JSON values types to
21239  UBJSON types according to the UBJSON specification:
21240 
21241  JSON value type | value/range | UBJSON type | marker
21242  --------------- | --------------------------------- | ----------- | ------
21243  null | `null` | null | `Z`
21244  boolean | `true` | true | `T`
21245  boolean | `false` | false | `F`
21246  number_integer | -9223372036854775808..-2147483649 | int64 | `L`
21247  number_integer | -2147483648..-32769 | int32 | `l`
21248  number_integer | -32768..-129 | int16 | `I`
21249  number_integer | -128..127 | int8 | `i`
21250  number_integer | 128..255 | uint8 | `U`
21251  number_integer | 256..32767 | int16 | `I`
21252  number_integer | 32768..2147483647 | int32 | `l`
21253  number_integer | 2147483648..9223372036854775807 | int64 | `L`
21254  number_unsigned | 0..127 | int8 | `i`
21255  number_unsigned | 128..255 | uint8 | `U`
21256  number_unsigned | 256..32767 | int16 | `I`
21257  number_unsigned | 32768..2147483647 | int32 | `l`
21258  number_unsigned | 2147483648..9223372036854775807 | int64 | `L`
21259  number_float | *any value* | float64 | `D`
21260  string | *with shortest length indicator* | string | `S`
21261  array | *see notes on optimized format* | array | `[`
21262  object | *see notes on optimized format* | map | `{`
21263 
21264  @note The mapping is **complete** in the sense that any JSON value type
21265  can be converted to a UBJSON value.
21266 
21267  @note The following values can **not** be converted to a UBJSON value:
21268  - strings with more than 9223372036854775807 bytes (theoretical)
21269  - unsigned integer numbers above 9223372036854775807
21270 
21271  @note The following markers are not used in the conversion:
21272  - `Z`: no-op values are not created.
21273  - `C`: single-byte strings are serialized with `S` markers.
21274 
21275  @note Any UBJSON output created @ref to_ubjson can be successfully parsed
21276  by @ref from_ubjson.
21277 
21278  @note If NaN or Infinity are stored inside a JSON number, they are
21279  serialized properly. This behavior differs from the @ref dump()
21280  function which serializes NaN or Infinity to `null`.
21281 
21282  @note The optimized formats for containers are supported: Parameter
21283  @a use_size adds size information to the beginning of a container and
21284  removes the closing marker. Parameter @a use_type further checks
21285  whether all elements of a container have the same type and adds the
21286  type marker to the beginning of the container. The @a use_type
21287  parameter must only be used together with @a use_size = true. Note
21288  that @a use_size = true alone may result in larger representations -
21289  the benefit of this parameter is that the receiving side is
21290  immediately informed on the number of elements of the container.
21291 
21292  @param[in] j JSON value to serialize
21293  @param[in] use_size whether to add size annotations to container types
21294  @param[in] use_type whether to add type annotations to container types
21295  (must be combined with @a use_size = true)
21296  @return UBJSON serialization as byte vector
21297 
21298  @complexity Linear in the size of the JSON value @a j.
21299 
21300  @liveexample{The example shows the serialization of a JSON value to a byte
21301  vector in UBJSON format.,to_ubjson}
21302 
21303  @sa http://ubjson.org
21304  @sa @ref from_ubjson(detail::input_adapter&&, const bool, const bool) for the
21305  analogous deserialization
21306  @sa @ref to_cbor(const basic_json& for the related CBOR format
21307  @sa @ref to_msgpack(const basic_json&) for the related MessagePack format
21308 
21309  @since version 3.1.0
21310  */
21311  static std::vector<uint8_t> to_ubjson(const basic_json& j,
21312  const bool use_size = false,
21313  const bool use_type = false)
21314  {
21315  std::vector<uint8_t> result;
21316  to_ubjson(j, result, use_size, use_type);
21317  return result;
21318  }
21319 
21321  const bool use_size = false, const bool use_type = false)
21322  {
21323  binary_writer<uint8_t>(o).write_ubjson(j, use_size, use_type);
21324  }
21325 
21327  const bool use_size = false, const bool use_type = false)
21328  {
21329  binary_writer<char>(o).write_ubjson(j, use_size, use_type);
21330  }
21331 
21332 
21333  /*!
21334  @brief Serializes the given JSON object `j` to BSON and returns a vector
21335  containing the corresponding BSON-representation.
21336 
21337  BSON (Binary JSON) is a binary format in which zero or more ordered key/value pairs are
21338  stored as a single entity (a so-called document).
21339 
21340  The library uses the following mapping from JSON values types to BSON types:
21341 
21342  JSON value type | value/range | BSON type | marker
21343  --------------- | --------------------------------- | ----------- | ------
21344  null | `null` | null | 0x0A
21345  boolean | `true`, `false` | boolean | 0x08
21346  number_integer | -9223372036854775808..-2147483649 | int64 | 0x12
21347  number_integer | -2147483648..2147483647 | int32 | 0x10
21348  number_integer | 2147483648..9223372036854775807 | int64 | 0x12
21349  number_unsigned | 0..2147483647 | int32 | 0x10
21350  number_unsigned | 2147483648..9223372036854775807 | int64 | 0x12
21351  number_unsigned | 9223372036854775808..18446744073709551615| -- | --
21352  number_float | *any value* | double | 0x01
21353  string | *any value* | string | 0x02
21354  array | *any value* | document | 0x04
21355  object | *any value* | document | 0x03
21356 
21357  @warning The mapping is **incomplete**, since only JSON-objects (and things
21358  contained therein) can be serialized to BSON.
21359  Also, integers larger than 9223372036854775807 cannot be serialized to BSON,
21360  and the keys may not contain U+0000, since they are serialized a
21361  zero-terminated c-strings.
21362 
21363  @throw out_of_range.407 if `j.is_number_unsigned() && j.get<std::uint64_t>() > 9223372036854775807`
21364  @throw out_of_range.409 if a key in `j` contains a NULL (U+0000)
21365  @throw type_error.317 if `!j.is_object()`
21366 
21367  @pre The input `j` is required to be an object: `j.is_object() == true`.
21368 
21369  @note Any BSON output created via @ref to_bson can be successfully parsed
21370  by @ref from_bson.
21371 
21372  @param[in] j JSON value to serialize
21373  @return BSON serialization as byte vector
21374 
21375  @complexity Linear in the size of the JSON value @a j.
21376 
21377  @liveexample{The example shows the serialization of a JSON value to a byte
21378  vector in BSON format.,to_bson}
21379 
21380  @sa http://bsonspec.org/spec.html
21381  @sa @ref from_bson(detail::input_adapter&&, const bool strict) for the
21382  analogous deserialization
21383  @sa @ref to_ubjson(const basic_json&, const bool, const bool) for the
21384  related UBJSON format
21385  @sa @ref to_cbor(const basic_json&) for the related CBOR format
21386  @sa @ref to_msgpack(const basic_json&) for the related MessagePack format
21387  */
21388  static std::vector<uint8_t> to_bson(const basic_json& j)
21389  {
21390  std::vector<uint8_t> result;
21391  to_bson(j, result);
21392  return result;
21393  }
21394 
21395  /*!
21396  @brief Serializes the given JSON object `j` to BSON and forwards the
21397  corresponding BSON-representation to the given output_adapter `o`.
21398  @param j The JSON object to convert to BSON.
21399  @param o The output adapter that receives the binary BSON representation.
21400  @pre The input `j` shall be an object: `j.is_object() == true`
21401  @sa @ref to_bson(const basic_json&)
21402  */
21404  {
21405  binary_writer<uint8_t>(o).write_bson(j);
21406  }
21407 
21408  /*!
21409  @copydoc to_bson(const basic_json&, detail::output_adapter<uint8_t>)
21410  */
21412  {
21413  binary_writer<char>(o).write_bson(j);
21414  }
21415 
21416 
21417  /*!
21418  @brief create a JSON value from an input in CBOR format
21419 
21420  Deserializes a given input @a i to a JSON value using the CBOR (Concise
21421  Binary Object Representation) serialization format.
21422 
21423  The library maps CBOR types to JSON value types as follows:
21424 
21425  CBOR type | JSON value type | first byte
21426  ---------------------- | --------------- | ----------
21427  Integer | number_unsigned | 0x00..0x17
21428  Unsigned integer | number_unsigned | 0x18
21429  Unsigned integer | number_unsigned | 0x19
21430  Unsigned integer | number_unsigned | 0x1A
21431  Unsigned integer | number_unsigned | 0x1B
21432  Negative integer | number_integer | 0x20..0x37
21433  Negative integer | number_integer | 0x38
21434  Negative integer | number_integer | 0x39
21435  Negative integer | number_integer | 0x3A
21436  Negative integer | number_integer | 0x3B
21437  Negative integer | number_integer | 0x40..0x57
21438  UTF-8 string | string | 0x60..0x77
21439  UTF-8 string | string | 0x78
21440  UTF-8 string | string | 0x79
21441  UTF-8 string | string | 0x7A
21442  UTF-8 string | string | 0x7B
21443  UTF-8 string | string | 0x7F
21444  array | array | 0x80..0x97
21445  array | array | 0x98
21446  array | array | 0x99
21447  array | array | 0x9A
21448  array | array | 0x9B
21449  array | array | 0x9F
21450  map | object | 0xA0..0xB7
21451  map | object | 0xB8
21452  map | object | 0xB9
21453  map | object | 0xBA
21454  map | object | 0xBB
21455  map | object | 0xBF
21456  False | `false` | 0xF4
21457  True | `true` | 0xF5
21458  Null | `null` | 0xF6
21459  Half-Precision Float | number_float | 0xF9
21460  Single-Precision Float | number_float | 0xFA
21461  Double-Precision Float | number_float | 0xFB
21462 
21463  @warning The mapping is **incomplete** in the sense that not all CBOR
21464  types can be converted to a JSON value. The following CBOR types
21465  are not supported and will yield parse errors (parse_error.112):
21466  - byte strings (0x40..0x5F)
21467  - date/time (0xC0..0xC1)
21468  - bignum (0xC2..0xC3)
21469  - decimal fraction (0xC4)
21470  - bigfloat (0xC5)
21471  - tagged items (0xC6..0xD4, 0xD8..0xDB)
21472  - expected conversions (0xD5..0xD7)
21473  - simple values (0xE0..0xF3, 0xF8)
21474  - undefined (0xF7)
21475 
21476  @warning CBOR allows map keys of any type, whereas JSON only allows
21477  strings as keys in object values. Therefore, CBOR maps with keys
21478  other than UTF-8 strings are rejected (parse_error.113).
21479 
21480  @note Any CBOR output created @ref to_cbor can be successfully parsed by
21481  @ref from_cbor.
21482 
21483  @param[in] i an input in CBOR format convertible to an input adapter
21484  @param[in] strict whether to expect the input to be consumed until EOF
21485  (true by default)
21486  @param[in] allow_exceptions whether to throw exceptions in case of a
21487  parse error (optional, true by default)
21488 
21489  @return deserialized JSON value; in case of a parse error and
21490  @a allow_exceptions set to `false`, the return value will be
21491  value_t::discarded.
21492 
21493  @throw parse_error.110 if the given input ends prematurely or the end of
21494  file was not reached when @a strict was set to true
21495  @throw parse_error.112 if unsupported features from CBOR were
21496  used in the given input @a v or if the input is not valid CBOR
21497  @throw parse_error.113 if a string was expected as map key, but not found
21498 
21499  @complexity Linear in the size of the input @a i.
21500 
21501  @liveexample{The example shows the deserialization of a byte vector in CBOR
21502  format to a JSON value.,from_cbor}
21503 
21504  @sa http://cbor.io
21505  @sa @ref to_cbor(const basic_json&) for the analogous serialization
21506  @sa @ref from_msgpack(detail::input_adapter&&, const bool, const bool) for the
21507  related MessagePack format
21508  @sa @ref from_ubjson(detail::input_adapter&&, const bool, const bool) for the
21509  related UBJSON format
21510 
21511  @since version 2.0.9; parameter @a start_index since 2.1.1; changed to
21512  consume input adapters, removed start_index parameter, and added
21513  @a strict parameter since 3.0.0; added @a allow_exceptions parameter
21514  since 3.2.0
21515  */
21518  const bool strict = true,
21519  const bool allow_exceptions = true)
21520  {
21521  basic_json result;
21522  detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
21523  const bool res = binary_reader(detail::input_adapter(i)).sax_parse(input_format_t::cbor, &sdp, strict);
21524  return res ? result : basic_json(value_t::discarded);
21525  }
21526 
21527  /*!
21528  @copydoc from_cbor(detail::input_adapter&&, const bool, const bool)
21529  */
21530  template<typename A1, typename A2,
21533  static basic_json from_cbor(A1 && a1, A2 && a2,
21534  const bool strict = true,
21535  const bool allow_exceptions = true)
21536  {
21537  basic_json result;
21538  detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
21539  const bool res = binary_reader(detail::input_adapter(std::forward<A1>(a1), std::forward<A2>(a2))).sax_parse(input_format_t::cbor, &sdp, strict);
21540  return res ? result : basic_json(value_t::discarded);
21541  }
21542 
21543  /*!
21544  @brief create a JSON value from an input in MessagePack format
21545 
21546  Deserializes a given input @a i to a JSON value using the MessagePack
21547  serialization format.
21548 
21549  The library maps MessagePack types to JSON value types as follows:
21550 
21551  MessagePack type | JSON value type | first byte
21552  ---------------- | --------------- | ----------
21553  positive fixint | number_unsigned | 0x00..0x7F
21554  fixmap | object | 0x80..0x8F
21555  fixarray | array | 0x90..0x9F
21556  fixstr | string | 0xA0..0xBF
21557  nil | `null` | 0xC0
21558  false | `false` | 0xC2
21559  true | `true` | 0xC3
21560  float 32 | number_float | 0xCA
21561  float 64 | number_float | 0xCB
21562  uint 8 | number_unsigned | 0xCC
21563  uint 16 | number_unsigned | 0xCD
21564  uint 32 | number_unsigned | 0xCE
21565  uint 64 | number_unsigned | 0xCF
21566  int 8 | number_integer | 0xD0
21567  int 16 | number_integer | 0xD1
21568  int 32 | number_integer | 0xD2
21569  int 64 | number_integer | 0xD3
21570  str 8 | string | 0xD9
21571  str 16 | string | 0xDA
21572  str 32 | string | 0xDB
21573  array 16 | array | 0xDC
21574  array 32 | array | 0xDD
21575  map 16 | object | 0xDE
21576  map 32 | object | 0xDF
21577  negative fixint | number_integer | 0xE0-0xFF
21578 
21579  @warning The mapping is **incomplete** in the sense that not all
21580  MessagePack types can be converted to a JSON value. The following
21581  MessagePack types are not supported and will yield parse errors:
21582  - bin 8 - bin 32 (0xC4..0xC6)
21583  - ext 8 - ext 32 (0xC7..0xC9)
21584  - fixext 1 - fixext 16 (0xD4..0xD8)
21585 
21586  @note Any MessagePack output created @ref to_msgpack can be successfully
21587  parsed by @ref from_msgpack.
21588 
21589  @param[in] i an input in MessagePack format convertible to an input
21590  adapter
21591  @param[in] strict whether to expect the input to be consumed until EOF
21592  (true by default)
21593  @param[in] allow_exceptions whether to throw exceptions in case of a
21594  parse error (optional, true by default)
21595 
21596  @return deserialized JSON value; in case of a parse error and
21597  @a allow_exceptions set to `false`, the return value will be
21598  value_t::discarded.
21599 
21600  @throw parse_error.110 if the given input ends prematurely or the end of
21601  file was not reached when @a strict was set to true
21602  @throw parse_error.112 if unsupported features from MessagePack were
21603  used in the given input @a i or if the input is not valid MessagePack
21604  @throw parse_error.113 if a string was expected as map key, but not found
21605 
21606  @complexity Linear in the size of the input @a i.
21607 
21608  @liveexample{The example shows the deserialization of a byte vector in
21609  MessagePack format to a JSON value.,from_msgpack}
21610 
21611  @sa http://msgpack.org
21612  @sa @ref to_msgpack(const basic_json&) for the analogous serialization
21613  @sa @ref from_cbor(detail::input_adapter&&, const bool, const bool) for the
21614  related CBOR format
21615  @sa @ref from_ubjson(detail::input_adapter&&, const bool, const bool) for
21616  the related UBJSON format
21617  @sa @ref from_bson(detail::input_adapter&&, const bool, const bool) for
21618  the related BSON format
21619 
21620  @since version 2.0.9; parameter @a start_index since 2.1.1; changed to
21621  consume input adapters, removed start_index parameter, and added
21622  @a strict parameter since 3.0.0; added @a allow_exceptions parameter
21623  since 3.2.0
21624  */
21627  const bool strict = true,
21628  const bool allow_exceptions = true)
21629  {
21630  basic_json result;
21631  detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
21632  const bool res = binary_reader(detail::input_adapter(i)).sax_parse(input_format_t::msgpack, &sdp, strict);
21633  return res ? result : basic_json(value_t::discarded);
21634  }
21635 
21636  /*!
21637  @copydoc from_msgpack(detail::input_adapter&&, const bool, const bool)
21638  */
21639  template<typename A1, typename A2,
21642  static basic_json from_msgpack(A1 && a1, A2 && a2,
21643  const bool strict = true,
21644  const bool allow_exceptions = true)
21645  {
21646  basic_json result;
21647  detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
21648  const bool res = binary_reader(detail::input_adapter(std::forward<A1>(a1), std::forward<A2>(a2))).sax_parse(input_format_t::msgpack, &sdp, strict);
21649  return res ? result : basic_json(value_t::discarded);
21650  }
21651 
21652  /*!
21653  @brief create a JSON value from an input in UBJSON format
21654 
21655  Deserializes a given input @a i to a JSON value using the UBJSON (Universal
21656  Binary JSON) serialization format.
21657 
21658  The library maps UBJSON types to JSON value types as follows:
21659 
21660  UBJSON type | JSON value type | marker
21661  ----------- | --------------------------------------- | ------
21662  no-op | *no value, next value is read* | `N`
21663  null | `null` | `Z`
21664  false | `false` | `F`
21665  true | `true` | `T`
21666  float32 | number_float | `d`
21667  float64 | number_float | `D`
21668  uint8 | number_unsigned | `U`
21669  int8 | number_integer | `i`
21670  int16 | number_integer | `I`
21671  int32 | number_integer | `l`
21672  int64 | number_integer | `L`
21673  string | string | `S`
21674  char | string | `C`
21675  array | array (optimized values are supported) | `[`
21676  object | object (optimized values are supported) | `{`
21677 
21678  @note The mapping is **complete** in the sense that any UBJSON value can
21679  be converted to a JSON value.
21680 
21681  @param[in] i an input in UBJSON format convertible to an input adapter
21682  @param[in] strict whether to expect the input to be consumed until EOF
21683  (true by default)
21684  @param[in] allow_exceptions whether to throw exceptions in case of a
21685  parse error (optional, true by default)
21686 
21687  @return deserialized JSON value; in case of a parse error and
21688  @a allow_exceptions set to `false`, the return value will be
21689  value_t::discarded.
21690 
21691  @throw parse_error.110 if the given input ends prematurely or the end of
21692  file was not reached when @a strict was set to true
21693  @throw parse_error.112 if a parse error occurs
21694  @throw parse_error.113 if a string could not be parsed successfully
21695 
21696  @complexity Linear in the size of the input @a i.
21697 
21698  @liveexample{The example shows the deserialization of a byte vector in
21699  UBJSON format to a JSON value.,from_ubjson}
21700 
21701  @sa http://ubjson.org
21702  @sa @ref to_ubjson(const basic_json&, const bool, const bool) for the
21703  analogous serialization
21704  @sa @ref from_cbor(detail::input_adapter&&, const bool, const bool) for the
21705  related CBOR format
21706  @sa @ref from_msgpack(detail::input_adapter&&, const bool, const bool) for
21707  the related MessagePack format
21708  @sa @ref from_bson(detail::input_adapter&&, const bool, const bool) for
21709  the related BSON format
21710 
21711  @since version 3.1.0; added @a allow_exceptions parameter since 3.2.0
21712  */
21715  const bool strict = true,
21716  const bool allow_exceptions = true)
21717  {
21718  basic_json result;
21719  detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
21720  const bool res = binary_reader(detail::input_adapter(i)).sax_parse(input_format_t::ubjson, &sdp, strict);
21721  return res ? result : basic_json(value_t::discarded);
21722  }
21723 
21724  /*!
21725  @copydoc from_ubjson(detail::input_adapter&&, const bool, const bool)
21726  */
21727  template<typename A1, typename A2,
21730  static basic_json from_ubjson(A1 && a1, A2 && a2,
21731  const bool strict = true,
21732  const bool allow_exceptions = true)
21733  {
21734  basic_json result;
21735  detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
21736  const bool res = binary_reader(detail::input_adapter(std::forward<A1>(a1), std::forward<A2>(a2))).sax_parse(input_format_t::ubjson, &sdp, strict);
21737  return res ? result : basic_json(value_t::discarded);
21738  }
21739 
21740  /*!
21741  @brief Create a JSON value from an input in BSON format
21742 
21743  Deserializes a given input @a i to a JSON value using the BSON (Binary JSON)
21744  serialization format.
21745 
21746  The library maps BSON record types to JSON value types as follows:
21747 
21748  BSON type | BSON marker byte | JSON value type
21749  --------------- | ---------------- | ---------------------------
21750  double | 0x01 | number_float
21751  string | 0x02 | string
21752  document | 0x03 | object
21753  array | 0x04 | array
21754  binary | 0x05 | still unsupported
21755  undefined | 0x06 | still unsupported
21756  ObjectId | 0x07 | still unsupported
21757  boolean | 0x08 | boolean
21758  UTC Date-Time | 0x09 | still unsupported
21759  null | 0x0A | null
21760  Regular Expr. | 0x0B | still unsupported
21761  DB Pointer | 0x0C | still unsupported
21762  JavaScript Code | 0x0D | still unsupported
21763  Symbol | 0x0E | still unsupported
21764  JavaScript Code | 0x0F | still unsupported
21765  int32 | 0x10 | number_integer
21766  Timestamp | 0x11 | still unsupported
21767  128-bit decimal float | 0x13 | still unsupported
21768  Max Key | 0x7F | still unsupported
21769  Min Key | 0xFF | still unsupported
21770 
21771  @warning The mapping is **incomplete**. The unsupported mappings
21772  are indicated in the table above.
21773 
21774  @param[in] i an input in BSON format convertible to an input adapter
21775  @param[in] strict whether to expect the input to be consumed until EOF
21776  (true by default)
21777  @param[in] allow_exceptions whether to throw exceptions in case of a
21778  parse error (optional, true by default)
21779 
21780  @return deserialized JSON value; in case of a parse error and
21781  @a allow_exceptions set to `false`, the return value will be
21782  value_t::discarded.
21783 
21784  @throw parse_error.114 if an unsupported BSON record type is encountered
21785 
21786  @complexity Linear in the size of the input @a i.
21787 
21788  @liveexample{The example shows the deserialization of a byte vector in
21789  BSON format to a JSON value.,from_bson}
21790 
21791  @sa http://bsonspec.org/spec.html
21792  @sa @ref to_bson(const basic_json&) for the analogous serialization
21793  @sa @ref from_cbor(detail::input_adapter&&, const bool, const bool) for the
21794  related CBOR format
21795  @sa @ref from_msgpack(detail::input_adapter&&, const bool, const bool) for
21796  the related MessagePack format
21797  @sa @ref from_ubjson(detail::input_adapter&&, const bool, const bool) for the
21798  related UBJSON format
21799  */
21802  const bool strict = true,
21803  const bool allow_exceptions = true)
21804  {
21805  basic_json result;
21806  detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
21807  const bool res = binary_reader(detail::input_adapter(i)).sax_parse(input_format_t::bson, &sdp, strict);
21808  return res ? result : basic_json(value_t::discarded);
21809  }
21810 
21811  /*!
21812  @copydoc from_bson(detail::input_adapter&&, const bool, const bool)
21813  */
21814  template<typename A1, typename A2,
21817  static basic_json from_bson(A1 && a1, A2 && a2,
21818  const bool strict = true,
21819  const bool allow_exceptions = true)
21820  {
21821  basic_json result;
21822  detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
21823  const bool res = binary_reader(detail::input_adapter(std::forward<A1>(a1), std::forward<A2>(a2))).sax_parse(input_format_t::bson, &sdp, strict);
21824  return res ? result : basic_json(value_t::discarded);
21825  }
21826 
21827 
21828 
21829  /// @}
21830 
21831  //////////////////////////
21832  // JSON Pointer support //
21833  //////////////////////////
21834 
21835  /// @name JSON Pointer functions
21836  /// @{
21837 
21838  /*!
21839  @brief access specified element via JSON Pointer
21840 
21841  Uses a JSON pointer to retrieve a reference to the respective JSON value.
21842  No bound checking is performed. Similar to @ref operator[](const typename
21843  object_t::key_type&), `null` values are created in arrays and objects if
21844  necessary.
21845 
21846  In particular:
21847  - If the JSON pointer points to an object key that does not exist, it
21848  is created an filled with a `null` value before a reference to it
21849  is returned.
21850  - If the JSON pointer points to an array index that does not exist, it
21851  is created an filled with a `null` value before a reference to it
21852  is returned. All indices between the current maximum and the given
21853  index are also filled with `null`.
21854  - The special value `-` is treated as a synonym for the index past the
21855  end.
21856 
21857  @param[in] ptr a JSON pointer
21858 
21859  @return reference to the element pointed to by @a ptr
21860 
21861  @complexity Constant.
21862 
21863  @throw parse_error.106 if an array index begins with '0'
21864  @throw parse_error.109 if an array index was not a number
21865  @throw out_of_range.404 if the JSON pointer can not be resolved
21866 
21867  @liveexample{The behavior is shown in the example.,operatorjson_pointer}
21868 
21869  @since version 2.0.0
21870  */
21872  {
21873  return ptr.get_unchecked(this);
21874  }
21875 
21876  /*!
21877  @brief access specified element via JSON Pointer
21878 
21879  Uses a JSON pointer to retrieve a reference to the respective JSON value.
21880  No bound checking is performed. The function does not change the JSON
21881  value; no `null` values are created. In particular, the the special value
21882  `-` yields an exception.
21883 
21884  @param[in] ptr JSON pointer to the desired element
21885 
21886  @return const reference to the element pointed to by @a ptr
21887 
21888  @complexity Constant.
21889 
21890  @throw parse_error.106 if an array index begins with '0'
21891  @throw parse_error.109 if an array index was not a number
21892  @throw out_of_range.402 if the array index '-' is used
21893  @throw out_of_range.404 if the JSON pointer can not be resolved
21894 
21895  @liveexample{The behavior is shown in the example.,operatorjson_pointer_const}
21896 
21897  @since version 2.0.0
21898  */
21900  {
21901  return ptr.get_unchecked(this);
21902  }
21903 
21904  /*!
21905  @brief access specified element via JSON Pointer
21906 
21907  Returns a reference to the element at with specified JSON pointer @a ptr,
21908  with bounds checking.
21909 
21910  @param[in] ptr JSON pointer to the desired element
21911 
21912  @return reference to the element pointed to by @a ptr
21913 
21914  @throw parse_error.106 if an array index in the passed JSON pointer @a ptr
21915  begins with '0'. See example below.
21916 
21917  @throw parse_error.109 if an array index in the passed JSON pointer @a ptr
21918  is not a number. See example below.
21919 
21920  @throw out_of_range.401 if an array index in the passed JSON pointer @a ptr
21921  is out of range. See example below.
21922 
21923  @throw out_of_range.402 if the array index '-' is used in the passed JSON
21924  pointer @a ptr. As `at` provides checked access (and no elements are
21925  implicitly inserted), the index '-' is always invalid. See example below.
21926 
21927  @throw out_of_range.403 if the JSON pointer describes a key of an object
21928  which cannot be found. See example below.
21929 
21930  @throw out_of_range.404 if the JSON pointer @a ptr can not be resolved.
21931  See example below.
21932 
21933  @exceptionsafety Strong guarantee: if an exception is thrown, there are no
21934  changes in the JSON value.
21935 
21936  @complexity Constant.
21937 
21938  @since version 2.0.0
21939 
21940  @liveexample{The behavior is shown in the example.,at_json_pointer}
21941  */
21943  {
21944  return ptr.get_checked(this);
21945  }
21946 
21947  /*!
21948  @brief access specified element via JSON Pointer
21949 
21950  Returns a const reference to the element at with specified JSON pointer @a
21951  ptr, with bounds checking.
21952 
21953  @param[in] ptr JSON pointer to the desired element
21954 
21955  @return reference to the element pointed to by @a ptr
21956 
21957  @throw parse_error.106 if an array index in the passed JSON pointer @a ptr
21958  begins with '0'. See example below.
21959 
21960  @throw parse_error.109 if an array index in the passed JSON pointer @a ptr
21961  is not a number. See example below.
21962 
21963  @throw out_of_range.401 if an array index in the passed JSON pointer @a ptr
21964  is out of range. See example below.
21965 
21966  @throw out_of_range.402 if the array index '-' is used in the passed JSON
21967  pointer @a ptr. As `at` provides checked access (and no elements are
21968  implicitly inserted), the index '-' is always invalid. See example below.
21969 
21970  @throw out_of_range.403 if the JSON pointer describes a key of an object
21971  which cannot be found. See example below.
21972 
21973  @throw out_of_range.404 if the JSON pointer @a ptr can not be resolved.
21974  See example below.
21975 
21976  @exceptionsafety Strong guarantee: if an exception is thrown, there are no
21977  changes in the JSON value.
21978 
21979  @complexity Constant.
21980 
21981  @since version 2.0.0
21982 
21983  @liveexample{The behavior is shown in the example.,at_json_pointer_const}
21984  */
21985  const_reference at(const json_pointer& ptr) const
21986  {
21987  return ptr.get_checked(this);
21988  }
21989 
21990  /*!
21991  @brief return flattened JSON value
21992 
21993  The function creates a JSON object whose keys are JSON pointers (see [RFC
21994  6901](https://tools.ietf.org/html/rfc6901)) and whose values are all
21995  primitive. The original JSON value can be restored using the @ref
21996  unflatten() function.
21997 
21998  @return an object that maps JSON pointers to primitive values
21999 
22000  @note Empty objects and arrays are flattened to `null` and will not be
22001  reconstructed correctly by the @ref unflatten() function.
22002 
22003  @complexity Linear in the size the JSON value.
22004 
22005  @liveexample{The following code shows how a JSON object is flattened to an
22006  object whose keys consist of JSON pointers.,flatten}
22007 
22008  @sa @ref unflatten() for the reverse function
22009 
22010  @since version 2.0.0
22011  */
22013  {
22014  basic_json result(value_t::object);
22015  json_pointer::flatten("", *this, result);
22016  return result;
22017  }
22018 
22019  /*!
22020  @brief unflatten a previously flattened JSON value
22021 
22022  The function restores the arbitrary nesting of a JSON value that has been
22023  flattened before using the @ref flatten() function. The JSON value must
22024  meet certain constraints:
22025  1. The value must be an object.
22026  2. The keys must be JSON pointers (see
22027  [RFC 6901](https://tools.ietf.org/html/rfc6901))
22028  3. The mapped values must be primitive JSON types.
22029 
22030  @return the original JSON from a flattened version
22031 
22032  @note Empty objects and arrays are flattened by @ref flatten() to `null`
22033  values and can not unflattened to their original type. Apart from
22034  this example, for a JSON value `j`, the following is always true:
22035  `j == j.flatten().unflatten()`.
22036 
22037  @complexity Linear in the size the JSON value.
22038 
22039  @throw type_error.314 if value is not an object
22040  @throw type_error.315 if object values are not primitive
22041 
22042  @liveexample{The following code shows how a flattened JSON object is
22043  unflattened into the original nested JSON object.,unflatten}
22044 
22045  @sa @ref flatten() for the reverse function
22046 
22047  @since version 2.0.0
22048  */
22050  {
22051  return json_pointer::unflatten(*this);
22052  }
22053 
22054  /// @}
22055 
22056  //////////////////////////
22057  // JSON Patch functions //
22058  //////////////////////////
22059 
22060  /// @name JSON Patch functions
22061  /// @{
22062 
22063  /*!
22064  @brief applies a JSON patch
22065 
22066  [JSON Patch](http://jsonpatch.com) defines a JSON document structure for
22067  expressing a sequence of operations to apply to a JSON) document. With
22068  this function, a JSON Patch is applied to the current JSON value by
22069  executing all operations from the patch.
22070 
22071  @param[in] json_patch JSON patch document
22072  @return patched document
22073 
22074  @note The application of a patch is atomic: Either all operations succeed
22075  and the patched document is returned or an exception is thrown. In
22076  any case, the original value is not changed: the patch is applied
22077  to a copy of the value.
22078 
22079  @throw parse_error.104 if the JSON patch does not consist of an array of
22080  objects
22081 
22082  @throw parse_error.105 if the JSON patch is malformed (e.g., mandatory
22083  attributes are missing); example: `"operation add must have member path"`
22084 
22085  @throw out_of_range.401 if an array index is out of range.
22086 
22087  @throw out_of_range.403 if a JSON pointer inside the patch could not be
22088  resolved successfully in the current JSON value; example: `"key baz not
22089  found"`
22090 
22091  @throw out_of_range.405 if JSON pointer has no parent ("add", "remove",
22092  "move")
22093 
22094  @throw other_error.501 if "test" operation was unsuccessful
22095 
22096  @complexity Linear in the size of the JSON value and the length of the
22097  JSON patch. As usually only a fraction of the JSON value is affected by
22098  the patch, the complexity can usually be neglected.
22099 
22100  @liveexample{The following code shows how a JSON patch is applied to a
22101  value.,patch}
22102 
22103  @sa @ref diff -- create a JSON patch by comparing two JSON values
22104 
22105  @sa [RFC 6902 (JSON Patch)](https://tools.ietf.org/html/rfc6902)
22106  @sa [RFC 6901 (JSON Pointer)](https://tools.ietf.org/html/rfc6901)
22107 
22108  @since version 2.0.0
22109  */
22110  basic_json patch(const basic_json& json_patch) const
22111  {
22112  // make a working copy to apply the patch to
22113  basic_json result = *this;
22114 
22115  // the valid JSON Patch operations
22116  enum class patch_operations {add, remove, replace, move, copy, test, invalid};
22117 
22118  const auto get_op = [](const std::string & op)
22119  {
22120  if (op == "add")
22121  {
22122  return patch_operations::add;
22123  }
22124  if (op == "remove")
22125  {
22126  return patch_operations::remove;
22127  }
22128  if (op == "replace")
22129  {
22130  return patch_operations::replace;
22131  }
22132  if (op == "move")
22133  {
22134  return patch_operations::move;
22135  }
22136  if (op == "copy")
22137  {
22138  return patch_operations::copy;
22139  }
22140  if (op == "test")
22141  {
22142  return patch_operations::test;
22143  }
22144 
22145  return patch_operations::invalid;
22146  };
22147 
22148  // wrapper for "add" operation; add value at ptr
22149  const auto operation_add = [&result](json_pointer & ptr, basic_json val)
22150  {
22151  // adding to the root of the target document means replacing it
22152  if (ptr.empty())
22153  {
22154  result = val;
22155  return;
22156  }
22157 
22158  // make sure the top element of the pointer exists
22159  json_pointer top_pointer = ptr.top();
22160  if (top_pointer != ptr)
22161  {
22162  result.at(top_pointer);
22163  }
22164 
22165  // get reference to parent of JSON pointer ptr
22166  const auto last_path = ptr.back();
22167  ptr.pop_back();
22168  basic_json& parent = result[ptr];
22169 
22170  switch (parent.m_type)
22171  {
22172  case value_t::null:
22173  case value_t::object:
22174  {
22175  // use operator[] to add value
22176  parent[last_path] = val;
22177  break;
22178  }
22179 
22180  case value_t::array:
22181  {
22182  if (last_path == "-")
22183  {
22184  // special case: append to back
22185  parent.push_back(val);
22186  }
22187  else
22188  {
22189  const auto idx = json_pointer::array_index(last_path);
22190  if (JSON_HEDLEY_UNLIKELY(static_cast<size_type>(idx) > parent.size()))
22191  {
22192  // avoid undefined behavior
22193  JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range"));
22194  }
22195 
22196  // default case: insert add offset
22197  parent.insert(parent.begin() + static_cast<difference_type>(idx), val);
22198  }
22199  break;
22200  }
22201 
22202  // if there exists a parent it cannot be primitive
22203  default: // LCOV_EXCL_LINE
22204  assert(false); // LCOV_EXCL_LINE
22205  }
22206  };
22207 
22208  // wrapper for "remove" operation; remove value at ptr
22209  const auto operation_remove = [&result](json_pointer & ptr)
22210  {
22211  // get reference to parent of JSON pointer ptr
22212  const auto last_path = ptr.back();
22213  ptr.pop_back();
22214  basic_json& parent = result.at(ptr);
22215 
22216  // remove child
22217  if (parent.is_object())
22218  {
22219  // perform range check
22220  auto it = parent.find(last_path);
22221  if (JSON_HEDLEY_LIKELY(it != parent.end()))
22222  {
22223  parent.erase(it);
22224  }
22225  else
22226  {
22227  JSON_THROW(out_of_range::create(403, "key '" + last_path + "' not found"));
22228  }
22229  }
22230  else if (parent.is_array())
22231  {
22232  // note erase performs range check
22233  parent.erase(static_cast<size_type>(json_pointer::array_index(last_path)));
22234  }
22235  };
22236 
22237  // type check: top level value must be an array
22238  if (JSON_HEDLEY_UNLIKELY(not json_patch.is_array()))
22239  {
22240  JSON_THROW(parse_error::create(104, 0, "JSON patch must be an array of objects"));
22241  }
22242 
22243  // iterate and apply the operations
22244  for (const auto& val : json_patch)
22245  {
22246  // wrapper to get a value for an operation
22247  const auto get_value = [&val](const std::string & op,
22248  const std::string & member,
22249  bool string_type) -> basic_json &
22250  {
22251  // find value
22252  auto it = val.m_value.object->find(member);
22253 
22254  // context-sensitive error message
22255  const auto error_msg = (op == "op") ? "operation" : "operation '" + op + "'";
22256 
22257  // check if desired value is present
22258  if (JSON_HEDLEY_UNLIKELY(it == val.m_value.object->end()))
22259  {
22260  JSON_THROW(parse_error::create(105, 0, error_msg + " must have member '" + member + "'"));
22261  }
22262 
22263  // check if result is of type string
22264  if (JSON_HEDLEY_UNLIKELY(string_type and not it->second.is_string()))
22265  {
22266  JSON_THROW(parse_error::create(105, 0, error_msg + " must have string member '" + member + "'"));
22267  }
22268 
22269  // no error: return value
22270  return it->second;
22271  };
22272 
22273  // type check: every element of the array must be an object
22274  if (JSON_HEDLEY_UNLIKELY(not val.is_object()))
22275  {
22276  JSON_THROW(parse_error::create(104, 0, "JSON patch must be an array of objects"));
22277  }
22278 
22279  // collect mandatory members
22280  const std::string op = get_value("op", "op", true);
22281  const std::string path = get_value(op, "path", true);
22282  json_pointer ptr(path);
22283 
22284  switch (get_op(op))
22285  {
22286  case patch_operations::add:
22287  {
22288  operation_add(ptr, get_value("add", "value", false));
22289  break;
22290  }
22291 
22293  {
22294  operation_remove(ptr);
22295  break;
22296  }
22297 
22298  case patch_operations::replace:
22299  {
22300  // the "path" location must exist - use at()
22301  result.at(ptr) = get_value("replace", "value", false);
22302  break;
22303  }
22304 
22305  case patch_operations::move:
22306  {
22307  const std::string from_path = get_value("move", "from", true);
22308  json_pointer from_ptr(from_path);
22309 
22310  // the "from" location must exist - use at()
22311  basic_json v = result.at(from_ptr);
22312 
22313  // The move operation is functionally identical to a
22314  // "remove" operation on the "from" location, followed
22315  // immediately by an "add" operation at the target
22316  // location with the value that was just removed.
22317  operation_remove(from_ptr);
22318  operation_add(ptr, v);
22319  break;
22320  }
22321 
22323  {
22324  const std::string from_path = get_value("copy", "from", true);
22325  const json_pointer from_ptr(from_path);
22326 
22327  // the "from" location must exist - use at()
22328  basic_json v = result.at(from_ptr);
22329 
22330  // The copy is functionally identical to an "add"
22331  // operation at the target location using the value
22332  // specified in the "from" member.
22333  operation_add(ptr, v);
22334  break;
22335  }
22336 
22338  {
22339  bool success = false;
22340  JSON_TRY
22341  {
22342  // check if "value" matches the one at "path"
22343  // the "path" location must exist - use at()
22344  success = (result.at(ptr) == get_value("test", "value", false));
22345  }
22347  {
22348  // ignore out of range errors: success remains false
22349  }
22350 
22351  // throw an exception if test fails
22352  if (JSON_HEDLEY_UNLIKELY(not success))
22353  {
22354  JSON_THROW(other_error::create(501, "unsuccessful: " + val.dump()));
22355  }
22356 
22357  break;
22358  }
22359 
22360  default:
22361  {
22362  // op must be "add", "remove", "replace", "move", "copy", or
22363  // "test"
22364  JSON_THROW(parse_error::create(105, 0, "operation value '" + op + "' is invalid"));
22365  }
22366  }
22367  }
22368 
22369  return result;
22370  }
22371 
22372  /*!
22373  @brief creates a diff as a JSON patch
22374 
22375  Creates a [JSON Patch](http://jsonpatch.com) so that value @a source can
22376  be changed into the value @a target by calling @ref patch function.
22377 
22378  @invariant For two JSON values @a source and @a target, the following code
22379  yields always `true`:
22380  @code {.cpp}
22381  source.patch(diff(source, target)) == target;
22382  @endcode
22383 
22384  @note Currently, only `remove`, `add`, and `replace` operations are
22385  generated.
22386 
22387  @param[in] source JSON value to compare from
22388  @param[in] target JSON value to compare against
22389  @param[in] path helper value to create JSON pointers
22390 
22391  @return a JSON patch to convert the @a source to @a target
22392 
22393  @complexity Linear in the lengths of @a source and @a target.
22394 
22395  @liveexample{The following code shows how a JSON patch is created as a
22396  diff for two JSON values.,diff}
22397 
22398  @sa @ref patch -- apply a JSON patch
22399  @sa @ref merge_patch -- apply a JSON Merge Patch
22400 
22401  @sa [RFC 6902 (JSON Patch)](https://tools.ietf.org/html/rfc6902)
22402 
22403  @since version 2.0.0
22404  */
22406  static basic_json diff(const basic_json& source, const basic_json& target,
22407  const std::string& path = "")
22408  {
22409  // the patch
22410  basic_json result(value_t::array);
22411 
22412  // if the values are the same, return empty patch
22413  if (source == target)
22414  {
22415  return result;
22416  }
22417 
22418  if (source.type() != target.type())
22419  {
22420  // different types: replace value
22421  result.push_back(
22422  {
22423  {"op", "replace"}, {"path", path}, {"value", target}
22424  });
22425  return result;
22426  }
22427 
22428  switch (source.type())
22429  {
22430  case value_t::array:
22431  {
22432  // first pass: traverse common elements
22433  std::size_t i = 0;
22434  while (i < source.size() and i < target.size())
22435  {
22436  // recursive call to compare array values at index i
22437  auto temp_diff = diff(source[i], target[i], path + "/" + std::to_string(i));
22438  result.insert(result.end(), temp_diff.begin(), temp_diff.end());
22439  ++i;
22440  }
22441 
22442  // i now reached the end of at least one array
22443  // in a second pass, traverse the remaining elements
22444 
22445  // remove my remaining elements
22446  const auto end_index = static_cast<difference_type>(result.size());
22447  while (i < source.size())
22448  {
22449  // add operations in reverse order to avoid invalid
22450  // indices
22451  result.insert(result.begin() + end_index, object(
22452  {
22453  {"op", "remove"},
22454  {"path", path + "/" + std::to_string(i)}
22455  }));
22456  ++i;
22457  }
22458 
22459  // add other remaining elements
22460  while (i < target.size())
22461  {
22462  result.push_back(
22463  {
22464  {"op", "add"},
22465  {"path", path + "/" + std::to_string(i)},
22466  {"value", target[i]}
22467  });
22468  ++i;
22469  }
22470 
22471  break;
22472  }
22473 
22474  case value_t::object:
22475  {
22476  // first pass: traverse this object's elements
22477  for (auto it = source.cbegin(); it != source.cend(); ++it)
22478  {
22479  // escape the key name to be used in a JSON patch
22480  const auto key = json_pointer::escape(it.key());
22481 
22482  if (target.find(it.key()) != target.end())
22483  {
22484  // recursive call to compare object values at key it
22485  auto temp_diff = diff(it.value(), target[it.key()], path + "/" + key);
22486  result.insert(result.end(), temp_diff.begin(), temp_diff.end());
22487  }
22488  else
22489  {
22490  // found a key that is not in o -> remove it
22491  result.push_back(object(
22492  {
22493  {"op", "remove"}, {"path", path + "/" + key}
22494  }));
22495  }
22496  }
22497 
22498  // second pass: traverse other object's elements
22499  for (auto it = target.cbegin(); it != target.cend(); ++it)
22500  {
22501  if (source.find(it.key()) == source.end())
22502  {
22503  // found a key that is not in this -> add it
22504  const auto key = json_pointer::escape(it.key());
22505  result.push_back(
22506  {
22507  {"op", "add"}, {"path", path + "/" + key},
22508  {"value", it.value()}
22509  });
22510  }
22511  }
22512 
22513  break;
22514  }
22515 
22516  default:
22517  {
22518  // both primitive type: replace value
22519  result.push_back(
22520  {
22521  {"op", "replace"}, {"path", path}, {"value", target}
22522  });
22523  break;
22524  }
22525  }
22526 
22527  return result;
22528  }
22529 
22530  /// @}
22531 
22532  ////////////////////////////////
22533  // JSON Merge Patch functions //
22534  ////////////////////////////////
22535 
22536  /// @name JSON Merge Patch functions
22537  /// @{
22538 
22539  /*!
22540  @brief applies a JSON Merge Patch
22541 
22542  The merge patch format is primarily intended for use with the HTTP PATCH
22543  method as a means of describing a set of modifications to a target
22544  resource's content. This function applies a merge patch to the current
22545  JSON value.
22546 
22547  The function implements the following algorithm from Section 2 of
22548  [RFC 7396 (JSON Merge Patch)](https://tools.ietf.org/html/rfc7396):
22549 
22550  ```
22551  define MergePatch(Target, Patch):
22552  if Patch is an Object:
22553  if Target is not an Object:
22554  Target = {} // Ignore the contents and set it to an empty Object
22555  for each Name/Value pair in Patch:
22556  if Value is null:
22557  if Name exists in Target:
22558  remove the Name/Value pair from Target
22559  else:
22560  Target[Name] = MergePatch(Target[Name], Value)
22561  return Target
22562  else:
22563  return Patch
22564  ```
22565 
22566  Thereby, `Target` is the current object; that is, the patch is applied to
22567  the current value.
22568 
22569  @param[in] apply_patch the patch to apply
22570 
22571  @complexity Linear in the lengths of @a patch.
22572 
22573  @liveexample{The following code shows how a JSON Merge Patch is applied to
22574  a JSON document.,merge_patch}
22575 
22576  @sa @ref patch -- apply a JSON patch
22577  @sa [RFC 7396 (JSON Merge Patch)](https://tools.ietf.org/html/rfc7396)
22578 
22579  @since version 3.0.0
22580  */
22581  void merge_patch(const basic_json& apply_patch)
22582  {
22583  if (apply_patch.is_object())
22584  {
22585  if (not is_object())
22586  {
22587  *this = object();
22588  }
22589  for (auto it = apply_patch.begin(); it != apply_patch.end(); ++it)
22590  {
22591  if (it.value().is_null())
22592  {
22593  erase(it.key());
22594  }
22595  else
22596  {
22597  operator[](it.key()).merge_patch(it.value());
22598  }
22599  }
22600  }
22601  else
22602  {
22603  *this = apply_patch;
22604  }
22605  }
22606 
22607  /// @}
22608 };
22609 
22610 /*!
22611 @brief user-defined to_string function for JSON values
22612 
22613 This function implements a user-defined to_string for JSON objects.
22614 
22615 @param[in] j a JSON object
22616 @return a std::string object
22617 */
22618 
22620 std::string to_string(const NLOHMANN_BASIC_JSON_TPL& j)
22621 {
22622  return j.dump();
22623 }
22624 } // namespace nlohmann
22625 
22626 ///////////////////////
22627 // nonmember support //
22628 ///////////////////////
22629 
22630 // specialization of std::swap, and std::hash
22631 namespace std
22632 {
22633 
22634 /// hash value for JSON objects
22635 template<>
22636 struct hash<nlohmann::json>
22637 {
22638  /*!
22639  @brief return a hash value for a JSON object
22640 
22641  @since version 1.0.0
22642  */
22643  std::size_t operator()(const nlohmann::json& j) const
22644  {
22645  // a naive hashing via the string representation
22646  const auto& h = hash<nlohmann::json::string_t>();
22647  return h(j.dump());
22648  }
22649 };
22650 
22651 /// specialization for std::less<value_t>
22652 /// @note: do not remove the space after '<',
22653 /// see https://github.com/nlohmann/json/pull/679
22654 template<>
22656 {
22657  /*!
22658  @brief compare two value_t enum values
22659  @since version 3.0.0
22660  */
22662  nlohmann::detail::value_t rhs) const noexcept
22663  {
22664  return nlohmann::detail::operator<(lhs, rhs);
22665  }
22666 };
22667 
22668 /*!
22669 @brief exchanges the values of two JSON objects
22670 
22671 @since version 1.0.0
22672 */
22673 template<>
22674 inline void swap<nlohmann::json>(nlohmann::json& j1, nlohmann::json& j2) noexcept(
22677 )
22678 {
22679  j1.swap(j2);
22680 }
22681 
22682 } // namespace std
22683 
22684 /*!
22685 @brief user-defined string literal for JSON values
22686 
22687 This operator implements a user-defined string literal for JSON objects. It
22688 can be used by adding `"_json"` to a string literal and returns a JSON object
22689 if no parse error occurred.
22690 
22691 @param[in] s a string representation of a JSON object
22692 @param[in] n the length of string @a s
22693 @return a JSON object
22694 
22695 @since version 1.0.0
22696 */
22698 inline nlohmann::json operator "" _json(const char* s, std::size_t n)
22699 {
22700  return nlohmann::json::parse(s, s + n);
22701 }
22702 
22703 /*!
22704 @brief user-defined string literal for JSON pointer
22705 
22706 This operator implements a user-defined string literal for JSON Pointers. It
22707 can be used by adding `"_json_pointer"` to a string literal and returns a JSON pointer
22708 object if no parse error occurred.
22709 
22710 @param[in] s a string representation of a JSON Pointer
22711 @param[in] n the length of string @a s
22712 @return a JSON pointer object
22713 
22714 @since version 2.0.0
22715 */
22717 inline nlohmann::json::json_pointer operator "" _json_pointer(const char* s, std::size_t n)
22718 {
22719  return nlohmann::json::json_pointer(std::string(s, n));
22720 }
22721 
22722 // #include <nlohmann/detail/macro_unscope.hpp>
22723 
22724 
22725 // restore GCC/clang diagnostic settings
22726 #if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
22727  #pragma GCC diagnostic pop
22728 #endif
22729 #if defined(__clang__)
22730  #pragma GCC diagnostic pop
22731 #endif
22732 
22733 // clean up
22734 #undef JSON_INTERNAL_CATCH
22735 #undef JSON_CATCH
22736 #undef JSON_THROW
22737 #undef JSON_TRY
22738 #undef JSON_HAS_CPP_14
22739 #undef JSON_HAS_CPP_17
22740 #undef NLOHMANN_BASIC_JSON_TPL_DECLARATION
22741 #undef NLOHMANN_BASIC_JSON_TPL
22742 
22743 // #include <nlohmann/thirdparty/hedley/hedley_undef.hpp>
22744 #undef JSON_HEDLEY_ALWAYS_INLINE
22745 #undef JSON_HEDLEY_ARM_VERSION
22746 #undef JSON_HEDLEY_ARM_VERSION_CHECK
22747 #undef JSON_HEDLEY_ARRAY_PARAM
22748 #undef JSON_HEDLEY_ASSUME
22749 #undef JSON_HEDLEY_BEGIN_C_DECLS
22750 #undef JSON_HEDLEY_C_DECL
22751 #undef JSON_HEDLEY_CLANG_HAS_ATTRIBUTE
22752 #undef JSON_HEDLEY_CLANG_HAS_BUILTIN
22753 #undef JSON_HEDLEY_CLANG_HAS_CPP_ATTRIBUTE
22754 #undef JSON_HEDLEY_CLANG_HAS_DECLSPEC_DECLSPEC_ATTRIBUTE
22755 #undef JSON_HEDLEY_CLANG_HAS_EXTENSION
22756 #undef JSON_HEDLEY_CLANG_HAS_FEATURE
22757 #undef JSON_HEDLEY_CLANG_HAS_WARNING
22758 #undef JSON_HEDLEY_COMPCERT_VERSION
22759 #undef JSON_HEDLEY_COMPCERT_VERSION_CHECK
22760 #undef JSON_HEDLEY_CONCAT
22761 #undef JSON_HEDLEY_CONCAT_EX
22762 #undef JSON_HEDLEY_CONST
22763 #undef JSON_HEDLEY_CONST_CAST
22764 #undef JSON_HEDLEY_CONSTEXPR
22765 #undef JSON_HEDLEY_CPP_CAST
22766 #undef JSON_HEDLEY_CRAY_VERSION
22767 #undef JSON_HEDLEY_CRAY_VERSION_CHECK
22768 #undef JSON_HEDLEY_DEPRECATED
22769 #undef JSON_HEDLEY_DEPRECATED_FOR
22770 #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL
22771 #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_
22772 #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED
22773 #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES
22774 #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS
22775 #undef JSON_HEDLEY_DIAGNOSTIC_POP
22776 #undef JSON_HEDLEY_DIAGNOSTIC_PUSH
22777 #undef JSON_HEDLEY_DMC_VERSION
22778 #undef JSON_HEDLEY_DMC_VERSION_CHECK
22779 #undef JSON_HEDLEY_EMPTY_BASES
22780 #undef JSON_HEDLEY_EMSCRIPTEN_VERSION
22781 #undef JSON_HEDLEY_EMSCRIPTEN_VERSION_CHECK
22782 #undef JSON_HEDLEY_END_C_DECLS
22783 #undef JSON_HEDLEY_FALL_THROUGH
22784 #undef JSON_HEDLEY_FLAGS
22785 #undef JSON_HEDLEY_FLAGS_CAST
22786 #undef JSON_HEDLEY_GCC_HAS_ATTRIBUTE
22787 #undef JSON_HEDLEY_GCC_HAS_BUILTIN
22788 #undef JSON_HEDLEY_GCC_HAS_CPP_ATTRIBUTE
22789 #undef JSON_HEDLEY_GCC_HAS_DECLSPEC_ATTRIBUTE
22790 #undef JSON_HEDLEY_GCC_HAS_EXTENSION
22791 #undef JSON_HEDLEY_GCC_HAS_FEATURE
22792 #undef JSON_HEDLEY_GCC_HAS_WARNING
22793 #undef JSON_HEDLEY_GCC_NOT_CLANG_VERSION_CHECK
22794 #undef JSON_HEDLEY_GCC_VERSION
22795 #undef JSON_HEDLEY_GCC_VERSION_CHECK
22796 #undef JSON_HEDLEY_GNUC_HAS_ATTRIBUTE
22797 #undef JSON_HEDLEY_GNUC_HAS_BUILTIN
22798 #undef JSON_HEDLEY_GNUC_HAS_CPP_ATTRIBUTE
22799 #undef JSON_HEDLEY_GNUC_HAS_DECLSPEC_ATTRIBUTE
22800 #undef JSON_HEDLEY_GNUC_HAS_EXTENSION
22801 #undef JSON_HEDLEY_GNUC_HAS_FEATURE
22802 #undef JSON_HEDLEY_GNUC_HAS_WARNING
22803 #undef JSON_HEDLEY_GNUC_VERSION
22804 #undef JSON_HEDLEY_GNUC_VERSION_CHECK
22805 #undef JSON_HEDLEY_HAS_ATTRIBUTE
22806 #undef JSON_HEDLEY_HAS_BUILTIN
22807 #undef JSON_HEDLEY_HAS_CPP_ATTRIBUTE
22808 #undef JSON_HEDLEY_HAS_CPP_ATTRIBUTE_NS
22809 #undef JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE
22810 #undef JSON_HEDLEY_HAS_EXTENSION
22811 #undef JSON_HEDLEY_HAS_FEATURE
22812 #undef JSON_HEDLEY_HAS_WARNING
22813 #undef JSON_HEDLEY_IAR_VERSION
22814 #undef JSON_HEDLEY_IAR_VERSION_CHECK
22815 #undef JSON_HEDLEY_IBM_VERSION
22816 #undef JSON_HEDLEY_IBM_VERSION_CHECK
22817 #undef JSON_HEDLEY_IMPORT
22818 #undef JSON_HEDLEY_INLINE
22819 #undef JSON_HEDLEY_INTEL_VERSION
22820 #undef JSON_HEDLEY_INTEL_VERSION_CHECK
22821 #undef JSON_HEDLEY_IS_CONSTANT
22822 #undef JSON_HEDLEY_IS_CONSTEXPR_
22823 #undef JSON_HEDLEY_LIKELY
22824 #undef JSON_HEDLEY_MALLOC
22825 #undef JSON_HEDLEY_MESSAGE
22826 #undef JSON_HEDLEY_MSVC_VERSION
22827 #undef JSON_HEDLEY_MSVC_VERSION_CHECK
22828 #undef JSON_HEDLEY_NEVER_INLINE
22829 #undef JSON_HEDLEY_NO_ESCAPE
22830 #undef JSON_HEDLEY_NON_NULL
22831 #undef JSON_HEDLEY_NO_RETURN
22832 #undef JSON_HEDLEY_NO_THROW
22833 #undef JSON_HEDLEY_NULL
22834 #undef JSON_HEDLEY_PELLES_VERSION
22835 #undef JSON_HEDLEY_PELLES_VERSION_CHECK
22836 #undef JSON_HEDLEY_PGI_VERSION
22837 #undef JSON_HEDLEY_PGI_VERSION_CHECK
22838 #undef JSON_HEDLEY_PREDICT
22839 #undef JSON_HEDLEY_PRINTF_FORMAT
22840 #undef JSON_HEDLEY_PRIVATE
22841 #undef JSON_HEDLEY_PUBLIC
22842 #undef JSON_HEDLEY_PURE
22843 #undef JSON_HEDLEY_REINTERPRET_CAST
22844 #undef JSON_HEDLEY_REQUIRE
22845 #undef JSON_HEDLEY_REQUIRE_CONSTEXPR
22846 #undef JSON_HEDLEY_REQUIRE_MSG
22847 #undef JSON_HEDLEY_RESTRICT
22848 #undef JSON_HEDLEY_RETURNS_NON_NULL
22849 #undef JSON_HEDLEY_SENTINEL
22850 #undef JSON_HEDLEY_STATIC_ASSERT
22851 #undef JSON_HEDLEY_STATIC_CAST
22852 #undef JSON_HEDLEY_STRINGIFY
22853 #undef JSON_HEDLEY_STRINGIFY_EX
22854 #undef JSON_HEDLEY_SUNPRO_VERSION
22855 #undef JSON_HEDLEY_SUNPRO_VERSION_CHECK
22856 #undef JSON_HEDLEY_TINYC_VERSION
22857 #undef JSON_HEDLEY_TINYC_VERSION_CHECK
22858 #undef JSON_HEDLEY_TI_VERSION
22859 #undef JSON_HEDLEY_TI_VERSION_CHECK
22860 #undef JSON_HEDLEY_UNAVAILABLE
22861 #undef JSON_HEDLEY_UNLIKELY
22862 #undef JSON_HEDLEY_UNPREDICTABLE
22863 #undef JSON_HEDLEY_UNREACHABLE
22864 #undef JSON_HEDLEY_UNREACHABLE_RETURN
22865 #undef JSON_HEDLEY_VERSION
22866 #undef JSON_HEDLEY_VERSION_DECODE_MAJOR
22867 #undef JSON_HEDLEY_VERSION_DECODE_MINOR
22868 #undef JSON_HEDLEY_VERSION_DECODE_REVISION
22869 #undef JSON_HEDLEY_VERSION_ENCODE
22870 #undef JSON_HEDLEY_WARNING
22871 #undef JSON_HEDLEY_WARN_UNUSED_RESULT
22872 
22873 
22874 
22875 #endif // INCLUDE_NLOHMANN_JSON_HPP_
json_value(string_t &&value)
constructor for rvalue strings
Definition: json.hpp:15513
void write_number_with_ubjson_prefix(const NumberType n, const bool add_prefix)
Definition: json.hpp:12339
static constexpr CharType get_ubjson_float_prefix(float)
Definition: json.hpp:12536
object_t * object
object (stored with pointer to save storage)
Definition: json.hpp:15417
reference operator+=(const basic_json &val)
add an object to an array
Definition: json.hpp:19467
iter_impl & operator=(const iter_impl< const BasicJsonType > &other) noexcept
converting assignment
Definition: json.hpp:9444
value_type const & operator*() const
Definition: json.hpp:11141
json_pointer & operator/=(std::string token)
append an unescaped reference token at the end of this JSON pointer
Definition: json.hpp:10194
basic_json(InputIT first, InputIT last)
construct a JSON container given an iterator range
Definition: json.hpp:16225
json_value(array_t &&value)
constructor for rvalue arrays
Definition: json.hpp:15537
bool parse_error(std::size_t, const std::string &, const detail::exception &)
Definition: json.hpp:5003
const_iterator find(KeyT &&key) const
find an element in a JSON object
Definition: json.hpp:18537
decltype(std::declval< T & >().string(std::declval< String & >())) string_function_t
Definition: json.hpp:5051
reference value() const
return the value of an iterator
Definition: json.hpp:10060
input_buffer_adapter(const char *b, const std::size_t l) noexcept
Definition: json.hpp:3997
void update(const_iterator first, const_iterator last)
updates a JSON object from another object, overwriting existing keys
Definition: json.hpp:20003
void from_json_array_impl(const BasicJsonType &j, typename BasicJsonType::array_t &arr, priority_tag< 3 >)
Definition: json.hpp:3042
string_t * get_impl_ptr(string_t *) noexcept
get a pointer to the value (string)
Definition: json.hpp:16995
constexpr number_unsigned_t get_number_unsigned() const noexcept
return unsigned integer value
Definition: json.hpp:8458
typename parser::parser_callback_t parser_callback_t
per-element parser callback type
Definition: json.hpp:15712
static void construct(BasicJsonType &j, const CompatibleArrayType &arr)
Definition: json.hpp:3572
iter_impl operator-(difference_type i) const
subtract from iterator
Definition: json.hpp:9853
double std(const std::vector< short > &wf, const double ped_mean, size_t start, size_t nsample)
Definition: UtilFunc.cxx:42
token_type
token types for the parser
Definition: json.hpp:7170
typename T::pointer pointer_t
Definition: json.hpp:2498
JSON_HEDLEY_RETURNS_NON_NULL static JSON_HEDLEY_CONST const char * token_type_name(const token_type t) noexcept
return name of values of type token_type (only used for errors)
Definition: json.hpp:7194
const int id
the id of the exception
Definition: json.hpp:1875
constexpr const object_t * get_impl_ptr(const object_t *) const noexcept
get a pointer to the value (object)
Definition: json.hpp:16977
#define JSON_HEDLEY_PURE
Definition: json.hpp:1170
parse_error(int id_, std::size_t byte_, const char *what_arg)
Definition: json.hpp:1974
static void construct(BasicJsonType &j, const CompatibleStringType &str)
Definition: json.hpp:3506
std::shared_ptr< input_adapter_protocol > input_adapter_t
a type to simplify interfaces
Definition: json.hpp:3912
NLOHMANN_BASIC_JSON_TPL basic_json_t
workaround type for MSVC
Definition: json.hpp:14727
static JSON_HEDLEY_WARN_UNUSED_RESULT basic_json from_bson(A1 &&a1, A2 &&a2, const bool strict=true, const bool allow_exceptions=true)
Create a JSON value from an input in BSON format.
Definition: json.hpp:21817
void from_json(const BasicJsonType &j, typename std::nullptr_t &n)
Definition: json.hpp:2898
static constexpr CharType get_cbor_float_prefix(float)
Definition: json.hpp:12308
number_unsigned_t * get_impl_ptr(number_unsigned_t *) noexcept
get a pointer to the value (unsigned number)
Definition: json.hpp:17031
input_adapter(IteratorType first, IteratorType last)
input adapter for iterator range with contiguous storage
Definition: json.hpp:4249
base_iterator & operator--()
size_type max_size() const noexcept
returns the maximum possible number of elements
Definition: json.hpp:19265
bool get_bson_string(const NumberType len, string_t &result)
Parses a zero-terminated string of length len from the BSON input.
Definition: json.hpp:5339
friend bool operator<(const_reference lhs, const_reference rhs) noexcept
comparison: less than
Definition: json.hpp:20372
error_handler_t
how to treat decoding errors
Definition: json.hpp:13779
iteration_proxy< iterator > items() noexcept
helper to access iterator member functions in range-based for
Definition: json.hpp:19059
iteration_proxy_value(IteratorType it) noexcept
Definition: json.hpp:3320
std::initializer_list< detail::json_ref< basic_json >> initializer_list_t
helper type for initializer lists of basic_json values
Definition: json.hpp:14759
typename BasicJsonType::number_float_t number_float_t
Definition: json.hpp:13790
static std::size_t calc_bson_string_size(const string_t &value)
Definition: json.hpp:12054
basic_json(basic_json &&other) noexcept
move constructor
Definition: json.hpp:16432
#define JSON_CATCH(exception)
Definition: json.hpp:1756
std::char_traits< char >::int_type get_character() noexceptoverride
get a character [0,255] or std::char_traits&lt;char&gt;::eof().
Definition: json.hpp:3933
NumberFloatType number_float_t
a type for a number (floating-point)
Definition: json.hpp:15362
constexpr auto get_ptr() const noexcept-> decltype(std::declval< const basic_json_t & >().get_impl_ptr(std::declval< PointerType >()))
get a pointer value (implicit)
Definition: json.hpp:17333
typename BasicJsonType::string_t string_t
Definition: json.hpp:4642
NLOHMANN_BASIC_JSON_TPL_DECLARATION std::string to_string(const NLOHMANN_BASIC_JSON_TPL &j)
user-defined to_string function for JSON values
Definition: json.hpp:22620
#define JSON_HEDLEY_DIAGNOSTIC_POP
Definition: json.hpp:736
static diyfp sub(const diyfp &x, const diyfp &y) noexcept
returns x - y
Definition: json.hpp:12712
iter_impl & operator+=(difference_type i)
add to iterator
Definition: json.hpp:9793
decltype(std::declval< T & >().boolean(std::declval< bool >())) boolean_function_t
Definition: json.hpp:5035
value_t
the JSON type enumeration
Definition: json.hpp:2854
basic_json(const BasicJsonType &val)
create a JSON value from an existing one
Definition: json.hpp:15880
primitive_iterator_t & operator+=(difference_type n) noexcept
Definition: json.hpp:9261
iter_impl operator+(difference_type i) const
add to iterator
Definition: json.hpp:9831
void grisu2_digit_gen(char *buffer, int &length, int &decimal_exponent, diyfp M_minus, diyfp w, diyfp M_plus)
Definition: json.hpp:13231
JSON_HEDLEY_RETURNS_NON_NULL const char * type_name() const noexcept
return the type as string
Definition: json.hpp:20987
auto key() const -> decltype(std::declval< Base >().key())
return the key of an object iterator
Definition: json.hpp:10053
ValueType value(const typename object_t::key_type &key, const ValueType &default_value) const
access specified object element with default value
Definition: json.hpp:18003
static constexpr Sample_t transform(Sample_t sample)
bool skip_bom()
skip the UTF-8 byte order mark
Definition: json.hpp:8526
int callback(void *data, int argc, char **argv, char **azColName)
iteration_proxy< const_iterator > items() const noexcept
helper to access iterator member functions in range-based for
Definition: json.hpp:19067
iter_impl(pointer object) noexcept
constructor for a given JSON instance
Definition: json.hpp:9392
IteratorType erase(IteratorType pos)
remove element given an iterator
Definition: json.hpp:18240
json_reverse_iterator const operator--(int)
post-decrement (it–)
Definition: json.hpp:10011
static void construct(BasicJsonType &j, typename BasicJsonType::number_float_t val) noexcept
Definition: json.hpp:3518
void write_bson_object(const typename BasicJsonType::object_t &value)
Definition: json.hpp:12292
~basic_json() noexcept
destructor
Definition: json.hpp:16502
array_t * array
array (stored with pointer to save storage)
Definition: json.hpp:15419
basic_json(CompatibleType &&val) noexcept(noexcept(JSONSerializer< U >::to_json(std::declval< basic_json_t & >(), std::forward< CompatibleType >(val))))
create a JSON value
Definition: json.hpp:15843
static void fill_buffer(const WideStringType &str, size_t &current_wchar, std::array< std::char_traits< char >::int_type, 4 > &utf8_bytes, size_t &utf8_bytes_index, size_t &utf8_bytes_filled)
Definition: json.hpp:4030
string_t * string
string (stored with pointer to save storage)
Definition: json.hpp:15421
process_name opflash particleana ie x
void operator=(nonesuch const &)=delete
ValueType & get_to(ValueType &v) const noexcept(noexcept(JSONSerializer< ValueType >::from_json(std::declval< const basic_json_t & >(), v)))
get a value (explicit)
Definition: json.hpp:17271
typename std::remove_cv< typename std::remove_reference< T >::type >::type uncvref_t
Definition: json.hpp:2194
static void construct(BasicJsonType &j, typename BasicJsonType::array_t &&arr)
Definition: json.hpp:3562
ReferenceType get_ref() const
get a reference value (implicit)
Definition: json.hpp:17427
bool start_array(std::size_t len)
Definition: json.hpp:4540
friend json_pointer operator/(const json_pointer &ptr, std::size_t array_index)
create a new JSON pointer by appending the array-index-token at the end of the JSON pointer ...
Definition: json.hpp:10277
typename BasicJsonType::string_t string_t
Definition: json.hpp:4460
void destroy(value_t t) noexcept
Definition: json.hpp:15542
primitive_iterator_t & operator++() noexcept
Definition: json.hpp:9235
bool number_integer(number_integer_t val)
Definition: json.hpp:4490
json_value(const string_t &value)
constructor for strings
Definition: json.hpp:15507
typename BasicJsonType::string_t string_t
Definition: json.hpp:5180
ValueType value(const json_pointer &ptr, const ValueType &default_value) const
access specified object element via JSON Pointer with default value
Definition: json.hpp:18075
static std::string format(PyObject *obj, unsigned int pos, unsigned int indent, unsigned int maxlen, unsigned int depth)
Definition: fclmodule.cxx:374
bool operator!=(const iteration_proxy_value &o) const
inequality operator (needed for range-based for)
Definition: json.hpp:3344
array (ordered collection of values)
const_reference at(const json_pointer &ptr) const
access specified element via JSON Pointer
Definition: json.hpp:21985
void write_bson_double(const string_t &name, const double value)
Writes a BSON element with key name and double value value.
Definition: json.hpp:12044
json_pointer(const std::string &s="")
create JSON pointer
Definition: json.hpp:10120
primitive_iterator_t operator+(difference_type n) noexcept
Definition: json.hpp:9223
static JSON_HEDLEY_WARN_UNUSED_RESULT basic_json parse(detail::input_adapter &&i, const parser_callback_t cb=nullptr, const bool allow_exceptions=true)
deserialize from a compatible input
Definition: json.hpp:20745
NumberUnsignedType number_unsigned_t
a type for a number (unsigned)
Definition: json.hpp:15294
constexpr value_t type() const noexcept
return the type of the JSON value (explicit)
Definition: json.hpp:16612
boolean_t boolean
boolean
Definition: json.hpp:15423
friend bool operator<=(const_reference lhs, const ScalarType rhs) noexcept
comparison: less than or equal
Definition: json.hpp:20494
bool contains(const BasicJsonType *ptr) const
Definition: json.hpp:10774
static other_error create(int id_, const std::string &what_arg)
Definition: json.hpp:2163
iter_impl & operator++()
pre-increment (++it)
Definition: json.hpp:9628
json_value(number_float_t v) noexcept
constructor for numbers (floating-point)
Definition: json.hpp:15440
json_value(value_t t)
constructor for empty values of a given type
Definition: json.hpp:15442
static constexpr CharType to_char_type(InputCharType x) noexcept
Definition: json.hpp:12614
do source
static void replace_substring(std::string &s, const std::string &f, const std::string &t)
replace all occurrences of a substring by another string
Definition: json.hpp:10925
NumberIntegerType number_integer_t
a type for a number (integer)
Definition: json.hpp:15223
reference operator[](const typename object_t::key_type &key)
access specified object element
Definition: json.hpp:17798
a template for a reverse iterator class
Definition: json.hpp:9982
constexpr bool operator<(CryostatID const &a, CryostatID const &b)
Order cryostats with increasing ID.
Definition: geo_types.h:706
bool start_object(std::size_t=std::size_t(-1))
Definition: json.hpp:4978
const char indent_char
the indentation character
Definition: json.hpp:14603
iter_impl(const iter_impl< typename std::remove_const< BasicJsonType >::type > &other) noexcept
converting constructor
Definition: json.hpp:9456
constexpr bool is_primitive() const noexcept
return whether type is primitive
Definition: json.hpp:16642
std::runtime_error m
an exception object as storage for error messages
Definition: json.hpp:1888
a class to store JSON values
Definition: json.hpp:2421
static void to_msgpack(const basic_json &j, detail::output_adapter< char > o)
Definition: json.hpp:21226
static void to_msgpack(const basic_json &j, detail::output_adapter< uint8_t > o)
Definition: json.hpp:21221
* file
Definition: file_to_url.sh:69
typename std::allocator_traits< allocator_type >::pointer pointer
the type of an element pointer
Definition: json.hpp:14815
typename T::iterator iterator_t
Definition: json.hpp:2507
reference at(const json_pointer &ptr)
access specified element via JSON Pointer
Definition: json.hpp:21942
#define JSON_HEDLEY_DIAGNOSTIC_PUSH
Definition: json.hpp:735
bool get_ubjson_string(string_t &result, const bool get_char=true)
reads a UBJSON string
Definition: json.hpp:6534
void merge_patch(const basic_json &apply_patch)
applies a JSON Merge Patch
Definition: json.hpp:22581
output_stream_adapter(std::basic_ostream< CharType > &s) noexcept
Definition: json.hpp:11238
iterator insert(const_iterator pos, basic_json &&val)
inserts element
Definition: json.hpp:19739
typename BasicJsonType::number_unsigned_t number_unsigned_t
Definition: json.hpp:7164
pdgs p
Definition: selectors.fcl:22
const std::string & back() const
return last reference token
Definition: json.hpp:10344
base_iterator & operator++()
value_type moved_or_copied() const
Definition: json.hpp:11132
typename BasicJsonType::string_t string_t
Definition: json.hpp:5086
basic_json(const value_t v)
create an empty value with a given type
Definition: json.hpp:15752
default JSONSerializer template argument
Definition: json.hpp:2409
std::shared_ptr< output_adapter_protocol< CharType >> output_adapter_t
a type to simplify interfaces
Definition: json.hpp:11207
void insert(const_iterator first, const_iterator last)
inserts elements
Definition: json.hpp:19910
iter_impl const operator--(int)
post-decrement (it–)
Definition: json.hpp:9660
array_t * get_impl_ptr(array_t *) noexcept
get a pointer to the value (array)
Definition: json.hpp:16983
typename lexer_t::token_type token_type
Definition: json.hpp:8691
boolean_t * get_impl_ptr(boolean_t *) noexcept
get a pointer to the value (boolean)
Definition: json.hpp:17007
constexpr bool is_structured() const noexcept
return whether type is structured
Definition: json.hpp:16669
static std::string escape(std::string s)
escape &quot;~&quot; to &quot;~0&quot; and &quot;/&quot; to &quot;~1&quot;
Definition: json.hpp:10937
Array get_to(T(&v)[N]) const noexcept(noexcept(JSONSerializer< Array >::from_json(std::declval< const basic_json_t & >(), v)))
Definition: json.hpp:17283
friend std::ostream & operator<<(std::ostream &o, const basic_json &j)
serialize to stream
Definition: json.hpp:20642
type_error(int id_, const char *what_arg)
Definition: json.hpp:2086
bool parse_error(std::size_t, const std::string &, const detail::exception &ex)
Definition: json.hpp:4806
static allocator_type get_allocator()
returns the allocator associated with the container
Definition: json.hpp:14834
void write_bson_object_entry(const string_t &name, const typename BasicJsonType::object_t &value)
Writes a BSON element with key name and object value.
Definition: json.hpp:12144
StringType string_t
a type for a string
Definition: json.hpp:15125
auto operator()(BasicJsonType &j, T &&val) const noexcept(noexcept(to_json(j, std::forward< T >(val)))) -> decltype(to_json(j, std::forward< T >(val)), void())
Definition: json.hpp:3778
lexer_t m_lexer
the lexer
Definition: json.hpp:9144
void parse(const bool strict, BasicJsonType &result)
public parser interface
Definition: json.hpp:8733
static diyfp normalize_to(const diyfp &x, const int target_exponent) noexcept
normalize x such that the result has the exponent E
Definition: json.hpp:12806
bool parse_bson_element_list(const bool is_array)
Read a BSON element list (as specified in the BSON-spec)
Definition: json.hpp:5431
static JSON_HEDLEY_WARN_UNUSED_RESULT basic_json from_ubjson(A1 &&a1, A2 &&a2, const bool strict=true, const bool allow_exceptions=true)
create a JSON value from an input in UBJSON format
Definition: json.hpp:21730
iterator end() noexcept
returns an iterator to one past the last element
Definition: json.hpp:18745
static std::string position_string(const position_t &pos)
Definition: json.hpp:1977
#define JSON_HEDLEY_WARN_UNUSED_RESULT
Definition: json.hpp:893
ObjectType< StringType, basic_json, object_comparator_t, AllocatorType< std::pair< const StringType, basic_json >>> object_t
a type for an object
Definition: json.hpp:15026
number value (signed integer)
std::char_traits< char >::int_type get_character() noexceptoverride
get a character [0,255] or std::char_traits&lt;char&gt;::eof().
Definition: json.hpp:4008
typename BasicJsonType::number_integer_t number_integer_t
Definition: json.hpp:7163
basic_json(size_type cnt, const basic_json &val)
construct an array with count copies of given value
Definition: json.hpp:16160
#define JSON_INTERNAL_CATCH(exception)
Definition: json.hpp:1757
Target reinterpret_bits(const Source source)
Definition: json.hpp:12690
json_pointer & operator/=(std::size_t array_index)
append an array index at the end of this JSON pointer
Definition: json.hpp:10216
unsigned int count_digits(number_unsigned_t x) noexcept
count digits
Definition: json.hpp:14303
difference_type operator-(const iter_impl &other) const
return difference
Definition: json.hpp:9864
static constexpr bool
void dump_integer(NumberType x)
dump an integer
Definition: json.hpp:14342
void swap(reference other) noexcept(std::is_nothrow_move_constructible< value_t >::value andstd::is_nothrow_move_assignable< value_t >::value andstd::is_nothrow_move_constructible< json_value >::value andstd::is_nothrow_move_assignable< json_value >::value)
exchanges the values
Definition: json.hpp:20054
std::size_t size(FixedBins< T, C > const &) noexcept
Definition: FixedBins.h:561
iterator begin() noexcept
returns an iterator to the first element
Definition: json.hpp:18674
static void construct(BasicJsonType &j, const typename BasicJsonType::string_t &s)
Definition: json.hpp:3488
basic_json patch(const basic_json &json_patch) const
applies a JSON patch
Definition: json.hpp:22110
auto operator()(const BasicJsonType &j, T &val) const noexcept(noexcept(from_json(j, val))) -> decltype(from_json(j, val), void())
Definition: json.hpp:3244
json_reverse_iterator & operator+=(difference_type i)
add to iterator
Definition: json.hpp:10023
difference_type operator-(const json_reverse_iterator &other) const
return difference
Definition: json.hpp:10041
void grisu2_round(char *buf, int len, std::uint64_t dist, std::uint64_t delta, std::uint64_t rest, std::uint64_t ten_k)
Definition: json.hpp:13190
std::ptrdiff_t difference_type
a type to represent differences between iterators
Definition: json.hpp:14807
static void unescape(std::string &s)
unescape &quot;~1&quot; to tilde and &quot;~0&quot; to slash (order is important!)
Definition: json.hpp:10945
reference operator+=(const typename object_t::value_type &val)
add an object to an object
Definition: json.hpp:19517
static constexpr CharType get_ubjson_float_prefix(double)
Definition: json.hpp:12541
auto cbegin(FixedBins< T, C > const &) noexcept
Definition: FixedBins.h:567
iterator insert(const_iterator pos, const_iterator first, const_iterator last)
inserts elements
Definition: json.hpp:19816
typename BasicJsonType::number_integer_t number_integer_t
Definition: json.hpp:5177
input_adapter(CharT b, std::size_t l)
input adapter for buffer
Definition: json.hpp:4228
friend bool operator!=(const ScalarType lhs, const_reference rhs) noexcept
comparison: not equal
Definition: json.hpp:20341
process_name E
BasicJsonType & get_and_create(BasicJsonType &j) const
create and return a reference to the pointed to value
Definition: json.hpp:10438
pointer m_object
associated JSON instance
Definition: json.hpp:9939
void dump(const BasicJsonType &val, const bool pretty_print, const bool ensure_ascii, const unsigned int indent_step, const unsigned int current_indent=0)
internal implementation of the serialization function
Definition: json.hpp:13837
friend bool operator>(const_reference lhs, const ScalarType rhs) noexcept
comparison: greater than
Definition: json.hpp:20540
iteration_proxy(typename IteratorType::reference cont) noexcept
construct iteration proxy from a container
Definition: json.hpp:3393
static JSON_HEDLEY_WARN_UNUSED_RESULT basic_json from_cbor(detail::input_adapter &&i, const bool strict=true, const bool allow_exceptions=true)
create a JSON value from an input in CBOR format
Definition: json.hpp:21517
iter_impl & operator-=(difference_type i)
subtract from iterator
Definition: json.hpp:9822
const_reverse_iterator rbegin() const noexcept
returns a const reverse iterator to the last element
Definition: json.hpp:18823
void push_back(std::string &&token)
append an unescaped token at the end of the reference pointer
Definition: json.hpp:10372
number_unsigned_t number_unsigned
number (unsigned integer)
Definition: json.hpp:15427
void set_end() noexcept
set the iterator past the last value
Definition: json.hpp:9515
number_float_t number_float
number (floating-point)
Definition: json.hpp:15429
pointer operator->() const
dereference the iterator
Definition: json.hpp:9583
a template for a bidirectional iterator for the basic_json class This class implements a both iterato...
Definition: json.hpp:9346
ignore invalid UTF-8 sequences
token_type get_token()
get next token from lexer
Definition: json.hpp:9104
friend bool operator==(const ScalarType lhs, const_reference rhs) noexcept
comparison: equal
Definition: json.hpp:20296
void get_arithmetic_value(const BasicJsonType &j, ArithmeticType &val)
Definition: json.hpp:2912
std::size_t chars_read_current_line
the number of characters read in the current line
Definition: json.hpp:94
::nlohmann::detail::output_adapter_t< CharType > output_adapter_t
Definition: json.hpp:14743
bool parse_cbor_internal(const bool get_char=true)
Definition: json.hpp:5497
std::bidirectional_iterator_tag iterator_category
Definition: json.hpp:9367
constexpr bool is_object() const noexcept
return whether value is an object
Definition: json.hpp:16850
void from_json_tuple_impl(const BasicJsonType &j, Tuple &t, index_sequence< Idx...>)
Definition: json.hpp:3190
output_adapter(std::basic_ostream< CharType > &s)
Definition: json.hpp:11288
void write_character(CharType c) override
Definition: json.hpp:11266
cached_power get_cached_power_for_binary_exponent(int e)
Definition: json.hpp:12970
bool get_msgpack_object(const std::size_t len)
Definition: json.hpp:6478
decltype(std::declval< T & >().start_array(std::declval< std::size_t >())) start_array_function_t
Definition: json.hpp:5066
json_reverse_iterator(const typename base_iterator::iterator_type &it) noexcept
create reverse iterator from iterator
Definition: json.hpp:9992
static std::vector< std::string > split(const std::string &reference_string)
split the string input to reference tokens
Definition: json.hpp:10850
lexical analysis
Definition: json.hpp:7161
json_reverse_iterator operator+(difference_type i) const
add to iterator
Definition: json.hpp:10029
static void construct(BasicJsonType &j, typename BasicJsonType::number_unsigned_t val) noexcept
Definition: json.hpp:3530
void write_bson(const BasicJsonType &j)
Definition: json.hpp:11337
string_t & get_string()
return current string value (implicitly resets the token; useful only once)
Definition: json.hpp:8470
reference operator[](difference_type n) const
access to successor
Definition: json.hpp:9885
void set_end() noexcept
set iterator to a defined past the end
Definition: json.hpp:9196
void * Tuple
Definition: DBFolder.h:13
typename BasicJsonType::number_integer_t number_integer_t
Definition: json.hpp:4943
int get_codepoint()
get codepoint from 4 hex characters following \u
Definition: json.hpp:7280
friend bool operator==(json_pointer const &lhs, json_pointer const &rhs) noexcept
compares two JSON pointers for equality
Definition: json.hpp:11059
friend bool operator>(const ScalarType lhs, const_reference rhs) noexcept
comparison: greater than
Definition: json.hpp:20551
syntax analysis
Definition: json.hpp:8684
serialization to CBOR and MessagePack values
Definition: json.hpp:11318
std::false_type value_t
Definition: json.hpp:2352
output adapter for byte vectors
Definition: json.hpp:11211
constexpr const string_t * get_impl_ptr(const string_t *) const noexcept
get a pointer to the value (string)
Definition: json.hpp:17001
tuple m
now if test mode generate materials, CRT shell, world, gdml header else just generate CRT shell for u...
static JSON_HEDLEY_WARN_UNUSED_RESULT basic_json object(initializer_list_t init={})
explicitly create an object from an initializer list
Definition: json.hpp:16133
const std::size_t byte
byte index of the parse error
Definition: json.hpp:1971
reference operator[](difference_type n) const
access to successor
Definition: json.hpp:10047
abstract input adapter interface
Definition: json.hpp:3904
typename BasicJsonType::number_unsigned_t number_unsigned_t
type for unsigned integers
Definition: json.hpp:4338
void unget()
unget current character (read it again on next get)
Definition: json.hpp:8414
json_value(number_integer_t v) noexcept
constructor for numbers (integer)
Definition: json.hpp:15436
friend bool operator>=(const_reference lhs, const ScalarType rhs) noexcept
comparison: greater than or equal
Definition: json.hpp:20586
BasicJsonType::object_t::iterator object_iterator
iterator for JSON objects
Definition: json.hpp:9290
void to_json(BasicJsonType &j, T b) noexcept
Definition: json.hpp:3647
bool operator>=(const iter_impl &other) const
comparison: greater than or equal
Definition: json.hpp:9784
auto cend(FixedBins< T, C > const &) noexcept
Definition: FixedBins.h:579
json_ref(Args &&...args)
Definition: json.hpp:11121
bool number_float(number_float_t val, const string_t &)
Definition: json.hpp:4502
exception indicating access out of the defined range
Definition: json.hpp:2122
bool next_byte_in_range(std::initializer_list< int > ranges)
check if the next byte(s) are inside a given range
Definition: json.hpp:7328
constexpr bool is_null() const noexcept
return whether value is null
Definition: json.hpp:16691
constexpr bool is_number_float() const noexcept
return whether value is a floating-point number
Definition: json.hpp:16828
typename BasicJsonType::number_unsigned_t number_unsigned_t
Definition: json.hpp:4640
std::function< bool(int depth, parse_event_t event, BasicJsonType &parsed)> parser_callback_t
Definition: json.hpp:8711
token_type scan()
Definition: json.hpp:8540
JSON_HEDLEY_RETURNS_NON_NULL BasicJsonType * handle_value(Value &&v)
Definition: json.hpp:4601
bool get_number(const input_format_t format, NumberType &result)
Definition: json.hpp:6983
primitive_iterator_t & operator--() noexcept
Definition: json.hpp:9248
JSONSerializer< T, SFINAE > json_serializer
Definition: json.hpp:14755
iterator find(KeyT &&key)
find an element in a JSON object
Definition: json.hpp:18520
const_reference operator[](size_type idx) const
access specified array element
Definition: json.hpp:17760
void set_begin() noexcept
set iterator to a defined beginning
Definition: json.hpp:9190
decltype(std::declval< T >().template get< U >()) get_template_function
Definition: json.hpp:2516
void write_msgpack(const BasicJsonType &j)
Definition: json.hpp:11601
bool Compare(const T &a, const T &b, const std::string &key)
Definition: diff_spectra.cc:93
static constexpr std::size_t calc_bson_unsigned_size(const std::uint64_t value) noexcept
Definition: json.hpp:12112
const string_type & key() const
return key of the iterator
Definition: json.hpp:3350
static diyfp normalize(diyfp x) noexcept
normalize x such that the significand is &gt;= 2^(q-1)
Definition: json.hpp:12789
static JSON_HEDLEY_WARN_UNUSED_RESULT basic_json from_ubjson(detail::input_adapter &&i, const bool strict=true, const bool allow_exceptions=true)
create a JSON value from an input in UBJSON format
Definition: json.hpp:21714
reference at(size_type idx)
access specified array element with bounds checking
Definition: json.hpp:17519
basic_json(std::nullptr_t=nullptr) noexcept
create a null object
Definition: json.hpp:15776
typename BasicJsonType::exception exception_t
Definition: json.hpp:5087
primitive_iterator_t const operator++(int) noexcept
Definition: json.hpp:9241
size_type erase(const typename object_t::key_type &key)
remove element from a JSON object given a key
Definition: json.hpp:18432
void add(int c)
add a character to token_buffer
Definition: json.hpp:8441
typename T::difference_type difference_type_t
Definition: json.hpp:2495
friend bool operator<(const_reference lhs, const ScalarType rhs) noexcept
comparison: less than
Definition: json.hpp:20448
basic_json(const basic_json &other)
copy constructor
Definition: json.hpp:16349
typename BasicJsonType::parser_callback_t parser_callback_t
Definition: json.hpp:4643
bool operator>(const iter_impl &other) const
comparison: greater than
Definition: json.hpp:9775
process_name gaushit a
constexpr position_t get_position() const noexcept
return position of last read token
Definition: json.hpp:8480
void write_bson_string(const string_t &name, const string_t &value)
Writes a BSON element with key name and string value value.
Definition: json.hpp:12062
iter_impl const operator++(int)
post-increment (it++)
Definition: json.hpp:9617
const_reference back() const
access the last element
Definition: json.hpp:18183
BEGIN_PROLOG triggeremu_data_config_icarus settings PMTADCthresholds sequence::icarus_stage0_multiTPC_TPC physics sequence::icarus_stage0_EastHits_TPC physics sequence::icarus_stage0_WestHits_TPC physics producers purityana0 caloskimCalorimetryCryoE physics caloskimCalorimetryCryoW physics path
decltype(std::declval< T & >().end_object()) end_object_function_t
Definition: json.hpp:5062
std::is_convertible< detected_t< Op, Args...>, To > is_detected_convertible
Definition: json.hpp:2380
const WideStringType & str
the wstring to process
Definition: json.hpp:4183
const_reference front() const
access the first element
Definition: json.hpp:18137
SAX implementation to create a JSON value from SAX events.
Definition: json.hpp:4454
typename detector< nonesuch, void, Op, Args...>::type detected_t
Definition: json.hpp:2367
while getopts h
static void construct(BasicJsonType &j, const typename BasicJsonType::object_t &obj)
Definition: json.hpp:3613
void clear() noexcept
clears the contents
Definition: json.hpp:19335
iterator insert(const_iterator pos, size_type cnt, const basic_json &val)
inserts elements
Definition: json.hpp:19768
auto vector(Vector const &v)
Returns a manipulator which will print the specified array.
Definition: DumpUtils.h:265
static JSON_HEDLEY_WARN_UNUSED_RESULT basic_json from_cbor(A1 &&a1, A2 &&a2, const bool strict=true, const bool allow_exceptions=true)
create a JSON value from an input in CBOR format
Definition: json.hpp:21533
reference operator+=(initializer_list_t init)
add an object to an object
Definition: json.hpp:19566
#define a2
typename BasicJsonType::number_unsigned_t number_unsigned_t
Definition: json.hpp:5084
constexpr number_integer_t get_number_integer() const noexcept
return integer value
Definition: json.hpp:8452
constexpr bool is_number() const noexcept
return whether value is a number
Definition: json.hpp:16743
void decode(std::any const &src, Interval< Args...> &iv)
Decodes an interval.
size_type count(KeyT &&key) const
returns the number of occurrences of a key in a JSON object
Definition: json.hpp:18571
exception indicating a parse error
Definition: json.hpp:1935
boolean_t get_impl(boolean_t *) const
get a boolean (explicit)
Definition: json.hpp:16960
#define JSON_THROW(exception)
Definition: json.hpp:1754
constexpr number_float_t get_number_float() const noexcept
return floating-point value
Definition: json.hpp:8464
json_reverse_iterator(const base_iterator &it) noexcept
create reverse iterator from base class
Definition: json.hpp:9996
const_reference at(const typename object_t::key_type &key) const
access specified object element with bounds checking
Definition: json.hpp:17668
static void to_ubjson(const basic_json &j, detail::output_adapter< char > o, const bool use_size=false, const bool use_type=false)
Definition: json.hpp:21326
BEGIN_PROLOG V
reference operator[](const json_pointer &ptr)
access specified element via JSON Pointer
Definition: json.hpp:21871
decltype(std::declval< T & >().parse_error(std::declval< std::size_t >(), std::declval< const std::string & >(), std::declval< const Exception & >())) parse_error_function_t
Definition: json.hpp:5074
basic_json unflatten() const
unflatten a previously flattened JSON value
Definition: json.hpp:22049
typename detector< nonesuch, void, Op, Args...>::value_t is_detected
Definition: json.hpp:2364
json_reverse_iterator const operator++(int)
post-increment (it++)
Definition: json.hpp:9999
bool number_unsigned(number_unsigned_t val)
Definition: json.hpp:4679
static void construct(BasicJsonType &j, const typename BasicJsonType::array_t &arr)
Definition: json.hpp:3554
decltype(std::declval< T & >().end_array()) end_array_function_t
Definition: json.hpp:5069
reference at(const typename object_t::key_type &key)
access specified object element with bounds checking
Definition: json.hpp:17617
std::vector< CharType > & v
Definition: json.hpp:11230
bool parse_ubjson_internal(const bool get_char=true)
Definition: json.hpp:6515
typename Base::reference reference
the reference type for the pointed-to element
Definition: json.hpp:9989
#define JSON_HEDLEY_RETURNS_NON_NULL
Definition: json.hpp:1362
void reset() noexcept
reset token_buffer; current character is beginning of token
Definition: json.hpp:8360
primitive_iterator_t primitive_iterator
generic iterator for all other types
Definition: json.hpp:9294
const_reference operator[](const typename object_t::key_type &key) const
read-only access specified object element
Definition: json.hpp:17847
abstract output adapter interface
Definition: json.hpp:11198
void write_character(CharType c) override
Definition: json.hpp:11218
static void to_cbor(const basic_json &j, detail::output_adapter< char > o)
Definition: json.hpp:21130
general exception of the basic_json class
Definition: json.hpp:1864
std::size_t operator()(const nlohmann::json &j) const
return a hash value for a JSON object
Definition: json.hpp:22643
bool isfinite(Vector const &v)
Returns whether all components of the vector are finite.
basic_json(const detail::json_ref< basic_json > &ref)
Definition: json.hpp:16320
IteratorType::reference container
the container to iterate
Definition: json.hpp:3389
size_type size() const noexcept
returns the number of elements
Definition: json.hpp:19195
typename BasicJsonType::template json_serializer< T, void > serializer
Definition: json.hpp:2526
process_name opflash particleana ie ie y
then echo ***************************************echo array
Definition: find_fhicl.sh:28
JSON_HEDLEY_RETURNS_NON_NULL char * append_exponent(char *buf, int e)
appends a decimal representation of e to buf
Definition: json.hpp:13572
double distance(geo::Point_t const &point, CathodeDesc_t const &cathode)
Returns the distance of a point from the cathode.
static std::vector< uint8_t > to_ubjson(const basic_json &j, const bool use_size=false, const bool use_type=false)
create a UBJSON serialization of a given JSON value
Definition: json.hpp:21311
boundaries compute_boundaries(FloatType value)
Definition: json.hpp:12831
out_of_range(int id_, const char *what_arg)
Definition: json.hpp:2133
bool get_cbor_object(const std::size_t len)
Definition: json.hpp:5964
BasicJsonType & get_unchecked(BasicJsonType *ptr) const
return a reference to the pointed to value
Definition: json.hpp:10518
static std::vector< uint8_t > to_cbor(const basic_json &j)
create a CBOR serialization of a given JSON value
Definition: json.hpp:21118
value_type const * operator->() const
Definition: json.hpp:11146
void write_bson_null(const string_t &name)
Writes a BSON element with key name and null value.
Definition: json.hpp:12076
typename BasicJsonType::number_float_t number_float_t
Definition: json.hpp:8688
const error_handler_t error_handler
error_handler how to react on decoding errors
Definition: json.hpp:14608
reference back()
access the last element
Definition: json.hpp:18173
static void construct(BasicJsonType &j, typename BasicJsonType::number_integer_t val) noexcept
Definition: json.hpp:3542
BasicJsonType::array_t::iterator array_iterator
iterator for JSON arrays
Definition: json.hpp:9292
reference emplace_back(Args &&...args)
add an object to an array
Definition: json.hpp:19596
bool parse_bson_array()
Reads an array from the BSON input and passes it to the SAX-parser.
Definition: json.hpp:5468
typename std::conditional< std::is_const< BasicJsonType >::value, typename BasicJsonType::const_reference, typename BasicJsonType::reference >::type reference
defines a reference to the type iterated over (value_type)
Definition: json.hpp:9381
friend bool operator==(const_reference lhs, const ScalarType rhs) noexcept
comparison: equal
Definition: json.hpp:20285
bool number_integer(number_integer_t val)
Definition: json.hpp:4673
output_adapter(std::vector< CharType > &vec)
Definition: json.hpp:11285
BEGIN_PROLOG dataFFTHistosEW root
internal_iterator< typename std::remove_const< BasicJsonType >::type > m_it
the actual iterator of the associated instance
Definition: json.hpp:9941
typename std::remove_cv< typename std::remove_reference< decltype(std::declval< IteratorType >().key()) >::type >::type string_type
Definition: json.hpp:3305
BasicJsonType & get_checked(BasicJsonType *ptr) const
Definition: json.hpp:10594
void dump_float(number_float_t x, std::false_type)
Definition: json.hpp:14457
void push_back(const std::string &token)
append an unescaped token at the end of the reference pointer
Definition: json.hpp:10366
const_iterator begin() const noexcept
returns a const iterator to the first element
Definition: json.hpp:18684
input_adapter(CharT b)
input adapter for string literal
Definition: json.hpp:4240
exception indicating errors with iterators
Definition: json.hpp:2021
reverse_iterator rend() noexcept
returns an iterator to the reverse-end
Definition: json.hpp:18852
constexpr bool is_boolean() const noexcept
return whether value is a boolean
Definition: json.hpp:16713
static JSON_HEDLEY_WARN_UNUSED_RESULT basic_json from_bson(detail::input_adapter &&i, const bool strict=true, const bool allow_exceptions=true)
Create a JSON value from an input in BSON format.
Definition: json.hpp:21801
bool operator<(const value_t lhs, const value_t rhs) noexcept
comparison operator for JSON types
Definition: json.hpp:2877
static std::vector< uint8_t > to_bson(const basic_json &j)
Serializes the given JSON object j to BSON and returns a vector containing the corresponding BSON-rep...
Definition: json.hpp:21388
void grisu2(char *buf, int &len, int &decimal_exponent, diyfp m_minus, diyfp v, diyfp m_plus)
Definition: json.hpp:13472
#define JSON_HEDLEY_DEPRECATED(since)
Definition: json.hpp:860
number_integer_t * get_impl_ptr(number_integer_t *) noexcept
get a pointer to the value (integer number)
Definition: json.hpp:17019
bool number_integer(number_integer_t)
Definition: json.hpp:4958
bool number_float(number_float_t val, const string_t &)
Definition: json.hpp:4685
#define JSON_HEDLEY_CONST
Definition: json.hpp:1191
json_ref(std::initializer_list< json_ref > init)
Definition: json.hpp:11114
bool get_cbor_array(const std::size_t len)
Definition: json.hpp:5928
IteratorType erase(IteratorType first, IteratorType last)
remove elements given an iterator range
Definition: json.hpp:18345
constexpr const boolean_t * get_impl_ptr(const boolean_t *) const noexcept
get a pointer to the value (boolean)
Definition: json.hpp:17013
constexpr bool is_string() const noexcept
return whether value is a string
Definition: json.hpp:16894
bool parse_bson_internal()
Reads in a BSON-object and passes it to the SAX-parser.
Definition: json.hpp:5282
constexpr difference_type get_value() const noexcept
Definition: json.hpp:9184
input adapter for buffer input
Definition: json.hpp:3994
typename BasicJsonType::number_integer_t number_integer_t
Definition: json.hpp:13791
bool start_object(std::size_t len)
Definition: json.hpp:4514
object (unordered set of name/value pairs)
void write_number(const NumberType n)
Definition: json.hpp:12562
static ReferenceType get_ref_impl(ThisType &obj)
helper function to implement get_ref()
Definition: json.hpp:17066
auto end(FixedBins< T, C > const &) noexcept
Definition: FixedBins.h:585
void dump_float(number_float_t x, std::true_type)
Definition: json.hpp:14449
ReferenceType get_ref()
get a reference value (implicit)
Definition: json.hpp:17414
typename BasicJsonType::number_integer_t number_integer_t
Definition: json.hpp:8686
static JSON_HEDLEY_WARN_UNUSED_RESULT basic_json from_msgpack(A1 &&a1, A2 &&a2, const bool strict=true, const bool allow_exceptions=true)
create a JSON value from an input in MessagePack format
Definition: json.hpp:21642
parser(detail::input_adapter_t &&adapter, const parser_callback_t cb=nullptr, const bool allow_exceptions_=true)
a parser reading from an input adapter
Definition: json.hpp:8714
typename std::enable_if< B, T >::type enable_if_t
Definition: json.hpp:2191
typename std::conditional< std::is_const< BasicJsonType >::value, typename BasicJsonType::const_pointer, typename BasicJsonType::pointer >::type pointer
defines a pointer to the type iterated over (value_type)
Definition: json.hpp:9376
#define NLOHMANN_BASIC_JSON_TPL
Definition: json.hpp:1822
friend bool operator!=(json_pointer const &lhs, json_pointer const &rhs) noexcept
compares two JSON pointers for inequality
Definition: json.hpp:11076
exception indicating executing a member function with a wrong type
Definition: json.hpp:2075
json_value(number_unsigned_t v) noexcept
constructor for numbers (unsigned)
Definition: json.hpp:15438
friend bool operator<=(const ScalarType lhs, const_reference rhs) noexcept
comparison: less than or equal
Definition: json.hpp:20505
#define NLOHMANN_JSON_VERSION_PATCH
Definition: json.hpp:35
static void flatten(const std::string &reference_string, const BasicJsonType &value, BasicJsonType &result)
Definition: json.hpp:10958
void write_bson_entry_header(const string_t &name, const std::uint8_t element_type)
Writes the given element_type and name to the output adapter.
Definition: json.hpp:12022
return match has_match and(match.match_pdg==11 or match.match_pdg==-11)
static constexpr CharType get_cbor_float_prefix(double)
Definition: json.hpp:12313
constexpr bool is_begin() const noexcept
return whether the iterator can be dereferenced
Definition: json.hpp:9202
void fill(const art::PtrVector< recob::Hit > &hits, int only_plane)
void assert_invariant() const noexcept
checks the class invariants
Definition: json.hpp:15634
typename BasicJsonType::number_float_t number_float_t
Definition: json.hpp:4641
friend std::istream & operator>>(std::istream &i, basic_json &j)
deserialize from stream
Definition: json.hpp:20944
typename BasicJsonType::parse_event_t parse_event_t
Definition: json.hpp:4644
String & operator+=(String &s, VectorDumper< Vector > const &manip)
Appends a string rendering of a vector to the specified string.
Definition: DumpUtils.h:424
typename BasicJsonType::number_unsigned_t number_unsigned_t
Definition: json.hpp:5178
friend bool operator==(const_reference lhs, const_reference rhs) noexcept
comparison: equal
Definition: json.hpp:20214
friend json_pointer operator/(const json_pointer &ptr, std::string token)
create a new JSON pointer by appending the unescaped token at the end of the JSON pointer ...
Definition: json.hpp:10257
static void construct(BasicJsonType &j, typename BasicJsonType::object_t &&obj)
Definition: json.hpp:3621
basic_json flatten() const
return flattened JSON value
Definition: json.hpp:22012
::nlohmann::json_pointer< basic_json > json_pointer
JSON Pointer, see nlohmann::json_pointer.
Definition: json.hpp:14753
typename parser::parse_event_t parse_event_t
parser event types
Definition: json.hpp:15661
typename BasicJsonType::number_unsigned_t number_unsigned_t
Definition: json.hpp:4944
decltype(std::declval< T & >().number_integer(std::declval< Integer >())) number_integer_function_t
Definition: json.hpp:5039
#define JSON_HEDLEY_NON_NULL(...)
Definition: json.hpp:1032
void push_back(const basic_json &val)
add an object to an array
Definition: json.hpp:19443
iterator insert_iterator(const_iterator pos, Args &&...args)
Definition: json.hpp:19679
typename T::value_type value_type_t
Definition: json.hpp:2492
output_vector_adapter(std::vector< CharType > &vec) noexcept
Definition: json.hpp:11214
void push_back(initializer_list_t init)
add an object to an object
Definition: json.hpp:19548
bool get_ubjson_value(const int prefix)
Definition: json.hpp:6706
bool parse_error(std::size_t, const std::string &, const detail::exception &ex)
Definition: json.hpp:4559
wide_string_input_adapter(const WideStringType &w) noexcept
Definition: json.hpp:4154
bool start_array(std::size_t=std::size_t(-1))
Definition: json.hpp:4993
static constexpr T value
Definition: json.hpp:2235
static basic_json parse(IteratorType first, IteratorType last, const parser_callback_t cb=nullptr, const bool allow_exceptions=true)
deserialize from an iterator range with contiguous storage
Definition: json.hpp:20877
j template void())
Definition: json.hpp:3108
static std::size_t calc_bson_array_size(const typename BasicJsonType::array_t &value)
Definition: json.hpp:12154
decltype(std::declval< T & >().null()) null_function_t
Definition: json.hpp:5031
bool empty() const noexcept
return whether pointer points to the root document
Definition: json.hpp:10391
typename BasicJsonType::number_float_t number_float_t
type for floating-point numbers
Definition: json.hpp:4340
IteratorType anchor
the iterator
Definition: json.hpp:3309
void write_bson_array(const string_t &name, const typename BasicJsonType::array_t &value)
Writes a BSON element with key name and array value.
Definition: json.hpp:12169
static invalid_iterator create(int id_, const std::string &what_arg)
Definition: json.hpp:2024
std::is_same< Expected, detected_t< Op, Args...>> is_detected_exact
Definition: json.hpp:2376
number_unsigned_t remove_sign(number_unsigned_t x)
Definition: json.hpp:14564
ArrayType< basic_json, AllocatorType< basic_json >> array_t
a type for an array
Definition: json.hpp:15072
typename BasicJsonType::exception exception_t
Definition: json.hpp:5119
const char * cursor
pointer to the current character
Definition: json.hpp:4021
static int array_index(const std::string &s)
Definition: json.hpp:10404
std::string get_token_string() const
Definition: json.hpp:7062
BasicJsonType & root
the parsed JSON value
Definition: json.hpp:4624
#define JSON_TRY
Definition: json.hpp:1755
iteration_proxy_value< IteratorType > begin() noexcept
return iterator begin (needed for range-based for)
Definition: json.hpp:3397
typename BasicJsonType::string_t string_t
Definition: json.hpp:8689
JSON_HEDLEY_RETURNS_NON_NULL constexpr const char * get_error_message() const noexcept
return syntax error message
Definition: json.hpp:8513
typename T::key_type key_type_t
Definition: json.hpp:2489
constexpr bool is_discarded() const noexcept
return whether value is discarded
Definition: json.hpp:16921
output adapter for basic_string
Definition: json.hpp:11259
void update(const_reference j)
updates a JSON object from another object, overwriting existing keys
Definition: json.hpp:19952
bool get_bson_cstr(string_t &result)
Parses a C-style string from the BSON input.
Definition: json.hpp:5307
input_stream_adapter(std::istream &i)
Definition: json.hpp:3963
input_adapter(const std::u32string &ws)
Definition: json.hpp:4218
input_adapter(std::istream &&i)
input adapter for input stream
Definition: json.hpp:4209
#define JSON_HEDLEY_LIKELY(expr)
Definition: json.hpp:1123
BooleanType boolean_t
a type for a boolean
Definition: json.hpp:15151
friend bool operator>(const_reference lhs, const_reference rhs) noexcept
comparison: greater than
Definition: json.hpp:20529
typename BasicJsonType::number_float_t number_float_t
Definition: json.hpp:4945
bool number_unsigned(number_unsigned_t)
Definition: json.hpp:4963
iteration_proxy_value & operator*()
dereference operator (needed for range-based for)
Definition: json.hpp:3323
binary_writer(output_adapter_t< CharType > adapter)
create a binary writer
Definition: json.hpp:11328
bool accept(const bool strict=true)
public accept interface
Definition: json.hpp:8794
static BasicJsonType unflatten(const BasicJsonType &value)
Definition: json.hpp:11021
output adapter for output streams
Definition: json.hpp:11235
reference operator*() const
return a reference to the value pointed to by the iterator
Definition: json.hpp:9546
auto begin(FixedBins< T, C > const &) noexcept
Definition: FixedBins.h:573
static std::size_t calc_bson_object_size(const typename BasicJsonType::object_t &value)
Calculates the size of the BSON serialization of the given JSON-object j.
Definition: json.hpp:12277
#define NLOHMANN_JSON_VERSION_MINOR
Definition: json.hpp:34
static JSON_HEDLEY_PURE char get_decimal_point() noexcept
return the locale-dependent decimal point
Definition: json.hpp:7254
reference operator+=(basic_json &&val)
add an object to an array
Definition: json.hpp:19433
then echo Cowardly refusing to create a new FHiCL file with the same name as the original one('${SourceName}')." >&2 exit 1 fi echo "'$
typename BasicJsonType::object_t object_t
Definition: json.hpp:9354
difference_type operator-(base_iterator const &other) const
void dump_float(number_float_t x)
dump a floating-point number
Definition: json.hpp:14428
bool operator<(const iter_impl &other) const
comparison: smaller
Definition: json.hpp:9739
input_adapter(const std::wstring &ws)
Definition: json.hpp:4212
static JSON_HEDLEY_WARN_UNUSED_RESULT basic_json diff(const basic_json &source, const basic_json &target, const std::string &path="")
creates a diff as a JSON patch
Definition: json.hpp:22406
void to_json_tuple_impl(BasicJsonType &j, const Tuple &t, index_sequence< Idx...>)
Definition: json.hpp:3764
use strict
Definition: SubmitCommand.pl:8
bool get_string(const input_format_t format, const NumberType len, string_t &result)
create a string by reading characters from the input
Definition: json.hpp:7026
json_ref(value_type &&value)
Definition: json.hpp:11106
constexpr bool is_number_integer() const noexcept
return whether value is an integer number
Definition: json.hpp:16772
exception indicating other library errors
Definition: json.hpp:2160
typename BasicJsonType::number_integer_t number_integer_t
type for (signed) integers
Definition: json.hpp:4336
std::input_iterator_tag iterator_category
Definition: json.hpp:3304
typename BasicJsonType::number_float_t number_float_t
Definition: json.hpp:5117
decltype(std::declval< T & >().number_float(std::declval< Float >(), std::declval< const String & >())) number_float_function_t
Definition: json.hpp:5047
invalid_iterator(int id_, const char *what_arg)
Definition: json.hpp:2032
static std::size_t calc_bson_entry_header_size(const string_t &name)
Definition: json.hpp:12007
static std::string name(const std::string &ename, int id_)
Definition: json.hpp:1881
constexpr bool is_end() const noexcept
return whether the iterator is at end
Definition: json.hpp:9208
typename BasicJsonType::string_t string_t
Definition: json.hpp:13789
const_iterator cbegin() const noexcept
returns a const iterator to the first element
Definition: json.hpp:18714
friend bool operator>=(const ScalarType lhs, const_reference rhs) noexcept
comparison: greater than or equal
Definition: json.hpp:20597
void swap(array_t &other)
exchanges the values
Definition: json.hpp:20086
std::pair< bool, BasicJsonType * > handle_value(Value &&v, const bool skip_callback=false)
Definition: json.hpp:4856
decltype(std::declval< T & >().start_object(std::declval< std::size_t >())) start_object_function_t
Definition: json.hpp:5055
object_t * get_impl_ptr(object_t *) noexcept
get a pointer to the value (object)
Definition: json.hpp:16971
typename std::allocator_traits< allocator_type >::const_pointer const_pointer
the type of an element const pointer
Definition: json.hpp:14817
json_pointer & operator/=(const json_pointer &ptr)
append another JSON pointer at the end of this JSON pointer
Definition: json.hpp:10170
deserialization of CBOR, MessagePack, and UBJSON values
Definition: json.hpp:5175
static void to_bson(const basic_json &j, detail::output_adapter< uint8_t > o)
Serializes the given JSON object j to BSON and forwards the corresponding BSON-representation to the ...
Definition: json.hpp:21403
static auto to_json(BasicJsonType &j, ValueType &&val) noexcept(noexcept(::nlohmann::to_json(j, std::forward< ValueType >(val)))) -> decltype(::nlohmann::to_json(j, std::forward< ValueType >(val)), void())
convert any value type to a JSON value
Definition: json.hpp:3827
const BasicJsonType & get_checked(const BasicJsonType *ptr) const
Definition: json.hpp:10718
bool get_ubjson_size_value(std::size_t &result)
Definition: json.hpp:6588
bool contains(const json_pointer &ptr) const
check the existence of an element in a JSON object given a JSON pointer
Definition: json.hpp:18635
static void to_bson(const basic_json &j, detail::output_adapter< char > o)
Serializes the given JSON object j to BSON and forwards the corresponding BSON-representation to the ...
Definition: json.hpp:21411
static JSON_HEDLEY_WARN_UNUSED_RESULT basic_json meta()
returns version information on the library
Definition: json.hpp:14866
typename BasicJsonType::value_type value_type
the type of the values when the iterator is dereferenced
Definition: json.hpp:9370
std::size_t lines_read
the number of lines read
Definition: json.hpp:96
decltype(std::declval< T & >().number_unsigned(std::declval< Unsigned >())) number_unsigned_function_t
Definition: json.hpp:5043
bool operator()(nlohmann::detail::value_t lhs, nlohmann::detail::value_t rhs) const noexcept
compare two value_t enum values
Definition: json.hpp:22661
json_sax_dom_parser(BasicJsonType &r, const bool allow_exceptions_=true)
Definition: json.hpp:4467
std::char_traits< char >::int_type get_character() override
get a character [0,255] or std::char_traits&lt;char&gt;::eof().
Definition: json.hpp:3976
typename BasicJsonType::number_float_t number_float_t
Definition: json.hpp:5085
static std::size_t calc_bson_integer_size(const std::int64_t value)
Definition: json.hpp:12084
bool get_msgpack_string(string_t &result)
reads a MessagePack string
Definition: json.hpp:6380
friend constexpr bool operator==(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
Definition: json.hpp:9213
constexpr bool is_errored() const
Definition: json.hpp:4587
std::basic_ostream< CharType > & stream
Definition: json.hpp:11254
constexpr double dist(const TReal *x, const TReal *y, const unsigned int dimension)
constexpr bool is_number_unsigned() const noexcept
return whether value is an unsigned integer number
Definition: json.hpp:16800
constexpr const array_t * get_impl_ptr(const array_t *) const noexcept
get a pointer to the value (array)
Definition: json.hpp:16989
static constexpr CharType get_msgpack_float_prefix(float)
Definition: json.hpp:12322
IteratorType::reference value() const
return value of the iterator
Definition: json.hpp:3378
static void to_ubjson(const basic_json &j, detail::output_adapter< uint8_t > o, const bool use_size=false, const bool use_type=false)
Definition: json.hpp:21320
QuadExpr operator+(double v, const QuadExpr &e)
Definition: QuadExpr.h:37
static void construct(BasicJsonType &j, const std::vector< bool > &arr)
Definition: json.hpp:3582
static constexpr std::size_t size() noexcept
Definition: json.hpp:2203
json_value(object_t &&value)
constructor for rvalue objects
Definition: json.hpp:15525
void write_character(CharType c) override
Definition: json.hpp:11242
void write_bson_integer(const string_t &name, const std::int64_t value)
Writes a BSON element with key name and integer value.
Definition: json.hpp:12094
number_integer_t number_integer
number (integer)
Definition: json.hpp:15425
BasicJsonType value_type
Definition: json.hpp:11104
decltype(T::from_json(std::declval< Args >()...)) from_json_function
Definition: json.hpp:2513
std::string to_string(WindowPattern const &pattern)
std::string to_string() const
return a string representation of the JSON pointer
Definition: json.hpp:10138
static CharType to_char_type(std::uint8_t x) noexcept
Definition: json.hpp:12592
then echo File list $list not found else cat $list while read file do echo $file sed s
Definition: file_to_url.sh:60
void swap(string_t &other)
exchanges the values
Definition: json.hpp:20152
iter_impl & operator=(const iter_impl< typename std::remove_const< BasicJsonType >::type > &other) noexcept
converting assignment
Definition: json.hpp:9466
typename BasicJsonType::number_unsigned_t number_unsigned_t
Definition: json.hpp:8687
static std::size_t calc_bson_element_size(const string_t &name, const BasicJsonType &j)
Calculates the size necessary to serialize the JSON value j with its name.
Definition: json.hpp:12189
json_value(const array_t &value)
constructor for arrays
Definition: json.hpp:15531
number_unsigned_t remove_sign(number_integer_t x) noexcept
Definition: json.hpp:14579
std::string exception_message(const input_format_t format, const std::string &detail, const std::string &context) const
Definition: json.hpp:7075
void write_bson_boolean(const string_t &name, const bool value)
Writes a BSON element with key name and boolean value value.
Definition: json.hpp:12034
byte_as<> byte
Type of data size stored in bytes, in long long precision.
Definition: datasize.h:98
iter_impl & operator--()
pre-decrement (–it)
Definition: json.hpp:9671
replace invalid UTF-8 sequences with U+FFFD
iterator insert(const_iterator pos, const basic_json &val)
inserts element
Definition: json.hpp:19717
constexpr bool is_array() const noexcept
return whether value is an array
Definition: json.hpp:16872
process_name largeant stream1 can override from command line with o or output physics producers generator N
typename make_void< Ts...>::type void_t
Definition: json.hpp:2267
binary_reader(input_adapter_t adapter)
create a binary reader
Definition: json.hpp:5189
static void construct(BasicJsonType &j, const std::valarray< T > &arr)
Definition: json.hpp:3596
const_iterator end() const noexcept
returns a const iterator to one past the last element
Definition: json.hpp:18755
std::less< StringType > object_comparator_t
Definition: json.hpp:14936
const_reverse_iterator crbegin() const noexcept
returns a const reverse iterator to the last element
Definition: json.hpp:18889
typename BasicJsonType::string_t string_t
Definition: json.hpp:7166
static constexpr CharType to_char_type(std::uint8_t x) noexcept
Definition: json.hpp:12585
int find_largest_pow10(const std::uint32_t n, std::uint32_t &pow10)
Definition: json.hpp:13134
typename BasicJsonType::string_t string_t
Definition: json.hpp:11320
json_sax_dom_callback_parser(BasicJsonType &r, const parser_callback_t cb, const bool allow_exceptions_=true)
Definition: json.hpp:4646
input_format_t
the supported input formats
Definition: json.hpp:3887
typename BasicJsonType::number_integer_t number_integer_t
Definition: json.hpp:4639
iteration_proxy_value< IteratorType > end() noexcept
return iterator end (needed for range-based for)
Definition: json.hpp:3403
typename BasicJsonType::number_unsigned_t number_unsigned_t
Definition: json.hpp:5116
static void construct(BasicJsonType &j, const CompatibleObjectType &obj)
Definition: json.hpp:3630
static out_of_range create(int id_, const std::string &what_arg)
Definition: json.hpp:2125
iterator insert(const_iterator pos, initializer_list_t ilist)
inserts elements
Definition: json.hpp:19869
do i e
typename BasicJsonType::number_unsigned_t number_unsigned_t
Definition: json.hpp:13792
typename BasicJsonType::string_t string_t
Definition: json.hpp:5118
json_value(boolean_t v) noexcept
constructor for booleans
Definition: json.hpp:15434
void dump_escaped(const string_t &s, const bool ensure_ascii)
dump escaped string
Definition: json.hpp:14047
typename BasicJsonType::difference_type difference_type
a type to represent differences between iterators
Definition: json.hpp:9372
T copy(T const &v)
static bool accept(detail::input_adapter &&i)
Definition: json.hpp:20754
primitive_iterator_t const operator--(int) noexcept
Definition: json.hpp:9254
typename detected_or< Default, Op, Args...>::type detected_or_t
Definition: json.hpp:2373
reference operator[](size_type idx)
access specified array element
Definition: json.hpp:17714
const_reference operator[](const json_pointer &ptr) const
access specified element via JSON Pointer
Definition: json.hpp:21899
std::char_traits< char >::int_type get_character() noexceptoverride
get a character [0,255] or std::char_traits&lt;char&gt;::eof().
Definition: json.hpp:4158
BasicJsonType & root
the parsed JSON value
Definition: json.hpp:4920
const_reference at(size_type idx) const
access specified array element with bounds checking
Definition: json.hpp:17566
void push_back(basic_json &&val)
add an object to an array
Definition: json.hpp:19406
void write_ubjson(const BasicJsonType &j, const bool use_count, const bool use_type, const bool add_prefix=true)
Definition: json.hpp:11843
friend bool operator<(const ScalarType lhs, const_reference rhs) noexcept
comparison: less than
Definition: json.hpp:20459
reference front()
access the first element
Definition: json.hpp:18129
JSON Pointer.
Definition: json.hpp:2435
string_t dump(const int indent=-1, const char indent_char= ' ', const bool ensure_ascii=false, const error_handler_t error_handler=error_handler_t::strict) const
serialization
Definition: json.hpp:16560
reverse_iterator rbegin() noexcept
returns an iterator to the reverse-beginning
Definition: json.hpp:18815
token_type scan_number()
scan a number literal
Definition: json.hpp:8009
bool get_ubjson_size_type(std::pair< std::size_t, int > &result)
determine the type and size for a container
Definition: json.hpp:6665
struct to capture the start position of the current token
Definition: json.hpp:89
bool operator<=(const iter_impl &other) const
comparison: less than or equal
Definition: json.hpp:9766
bool operator==(const iteration_proxy_value &o) const
equality operator (needed for InputIterator)
Definition: json.hpp:3338
number value (unsigned integer)
then echo fcl name
iter_impl(const iter_impl< const BasicJsonType > &other) noexcept
const copy constructor
Definition: json.hpp:9434
std::size_t size_type
a type to represent container sizes
Definition: json.hpp:14809
typename BasicJsonType::array_t array_t
Definition: json.hpp:9355
const_reverse_iterator crend() const noexcept
returns a const reverse iterator to one before the first
Definition: json.hpp:18918
serializer(output_adapter_t< char > s, const char ichar, error_handler_t error_handler_=error_handler_t::strict)
Definition: json.hpp:13802
CharType ubjson_prefix(const BasicJsonType &j) const noexcept
determine the type prefix of container values
Definition: json.hpp:12465
static constexpr bool little_endianess(int num=1) noexcept
determine system byte order
Definition: json.hpp:5268
decltype(std::declval< T & >().key(std::declval< String & >())) key_function_t
Definition: json.hpp:5059
std::FILE * m_file
the file pointer to read from
Definition: json.hpp:3940
temporary value
typename BasicJsonType::template json_serializer< T, void > serializer
Definition: json.hpp:2556
static bool accept(IteratorType first, IteratorType last)
Definition: json.hpp:20890
basic_json & operator=(basic_json other) noexcept(std::is_nothrow_move_constructible< value_t >::value andstd::is_nothrow_move_assignable< value_t >::value andstd::is_nothrow_move_constructible< json_value >::value andstd::is_nothrow_move_assignable< json_value >::value)
copy assignment
Definition: json.hpp:16469
const BasicJsonType & get_unchecked(const BasicJsonType *ptr) const
return a const reference to the pointed to value
Definition: json.hpp:10659
basic_json<> json
default JSON class
Definition: json.hpp:2445
friend bool operator!=(const_reference lhs, const ScalarType rhs) noexcept
comparison: not equal
Definition: json.hpp:20330
typename T::iterator_category iterator_category_t
Definition: json.hpp:2504
std::istream & is
the associated input stream
Definition: json.hpp:3989
friend constexpr difference_type operator-(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
Definition: json.hpp:9230
typename BasicJsonType::number_integer_t number_integer_t
Definition: json.hpp:5115
const object_t::key_type & key() const
return the key of an object iterator
Definition: json.hpp:9916
input_adapter(std::istream &i)
input adapter for input stream
Definition: json.hpp:4205
BEGIN_PROLOG hitmakerfive clustermakerfour pfparticlemakerthree showermakertwo END_PROLOG hitmakerfive clustermakerfour pfparticlemakerthree sequence::inline_paths sequence::inline_paths sequence::inline_paths showermakers test
static void fill_buffer(const WideStringType &str, size_t &current_wchar, std::array< std::char_traits< char >::int_type, 4 > &utf8_bytes, size_t &utf8_bytes_index, size_t &utf8_bytes_filled)
Definition: json.hpp:4089
bool operator!=(const iter_impl &other) const
comparison: not equal
Definition: json.hpp:9730
pdgs k
Definition: selectors.fcl:22
json_pointer parent_pointer() const
returns the parent of this JSON pointer
Definition: json.hpp:10295
json_reverse_iterator operator-(difference_type i) const
subtract from iterator
Definition: json.hpp:10035
void swap(object_t &other)
exchanges the values
Definition: json.hpp:20119
Vector normalize(Vector const &v)
Returns a vector parallel to v and with norm 1.
json_value(const object_t &value)
constructor for objects
Definition: json.hpp:15519
JSON_HEDLEY_RETURNS_NON_NULL char * format_buffer(char *buf, int len, int decimal_exponent, int min_exp, int max_exp)
prettify v = buf * 10^decimal_exponent
Definition: json.hpp:13624
decltype(T::to_json(std::declval< Args >()...)) to_json_function
Definition: json.hpp:2510
static std::vector< uint8_t > to_msgpack(const basic_json &j)
create a MessagePack serialization of a given JSON value
Definition: json.hpp:21214
typename BasicJsonType::number_integer_t number_integer_t
Definition: json.hpp:4457
typename T::reference reference_t
Definition: json.hpp:2501
const_iterator cend() const noexcept
returns a const iterator to one past the last element
Definition: json.hpp:18785
proxy class for the items() function
Definition: json.hpp:3385
number_float_t * get_impl_ptr(number_float_t *) noexcept
get a pointer to the value (floating-point number)
Definition: json.hpp:17043
json_reverse_iterator & operator--()
pre-decrement (–it)
Definition: json.hpp:10017
then echo find_global_symbol finds mangled or demangled symbols in libraries echo within LD_LIBRARY_PATH match any symbol that echo contains name echo Default
QuadExpr operator*(double v, const QuadExpr &e)
Definition: QuadExpr.h:39
reference value() const
return the value of an iterator
Definition: json.hpp:9932
friend json_pointer operator/(const json_pointer &lhs, const json_pointer &rhs)
create a new JSON pointer by appending the right JSON pointer at the end of the left JSON pointer ...
Definition: json.hpp:10236
bool operator==(const iter_impl &other) const
comparison: equal
Definition: json.hpp:9703
bool number_unsigned(number_unsigned_t val)
Definition: json.hpp:4496
typename BasicJsonType::number_float_t number_float_t
Definition: json.hpp:4459
void push_back(const typename object_t::value_type &val)
add an object to an object
Definition: json.hpp:19493
void write_bson_unsigned(const string_t &name, const std::uint64_t value)
Writes a BSON element with key name and unsigned value.
Definition: json.hpp:12122
string_t indent_string
the indentation string
Definition: json.hpp:14605
other_error(int id_, const char *what_arg)
Definition: json.hpp:2171
constexpr const number_unsigned_t * get_impl_ptr(const number_unsigned_t *) const noexcept
get a pointer to the value (unsigned number)
Definition: json.hpp:17037
basic_json(initializer_list_t init, bool type_deduction=true, value_t manual_type=value_t::array)
create a container (array or object) from an initializer list
Definition: json.hpp:15999
lexer(detail::input_adapter_t &&adapter)
Definition: json.hpp:7237
bool empty(FixedBins< T, C > const &) noexcept
Definition: FixedBins.h:555
esac echo uname r
friend constexpr bool operator<(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
Definition: json.hpp:9218
SAX interface.
Definition: json.hpp:4333
byte bytes
Alias for common language habits.
Definition: datasize.h:101
friend bool operator<=(const_reference lhs, const_reference rhs) noexcept
comparison: less than or equal
Definition: json.hpp:20483
number value (floating-point)
void erase(const size_type idx)
remove element from a JSON array given an index
Definition: json.hpp:18467
token_type scan_string()
scan a string literal
Definition: json.hpp:7365
bool operator==(infinite_endcount_iterator< T > const &, count_iterator< T > const &)
Definition: counter.h:269
typename BasicJsonType::number_unsigned_t number_unsigned_t
Definition: json.hpp:4458
constexpr diyfp(std::uint64_t f_, int e_) noexcept
Definition: json.hpp:12706
friend bool operator>=(const_reference lhs, const_reference rhs) noexcept
comparison: greater than or equal
Definition: json.hpp:20575
typename BasicJsonType::number_integer_t number_integer_t
Definition: json.hpp:5083
std::vector< std::string > reference_tokens
the reference tokens
Definition: json.hpp:11083
static JSON_HEDLEY_RETURNS_NON_NULL T * create(Args &&...args)
helper for exception-safe object creation
Definition: json.hpp:15371
friend bool operator!=(const_reference lhs, const_reference rhs) noexcept
comparison: not equal
Definition: json.hpp:20319
static JSON_HEDLEY_WARN_UNUSED_RESULT basic_json array(initializer_list_t init={})
explicitly create an array from an initializer list
Definition: json.hpp:16089
input_adapter(const std::u16string &ws)
Definition: json.hpp:4215
const char *const limit
pointer past the last character
Definition: json.hpp:4023
bool get_cbor_string(string_t &result)
reads a CBOR string
Definition: json.hpp:5839
void write_cbor(const BasicJsonType &j)
Definition: json.hpp:11357
typename BasicJsonType::number_float_t number_float_t
Definition: json.hpp:7165
typename BasicJsonType::string_t string_t
Definition: json.hpp:4946
static parse_error create(int id_, std::size_t byte_, const std::string &what_arg)
Definition: json.hpp:1954
static void construct(BasicJsonType &j, typename BasicJsonType::boolean_t b) noexcept
Definition: json.hpp:3476
std::pair< iterator, bool > emplace(Args &&...args)
add an object to an object if key does not exist
Definition: json.hpp:19649
std::size_t chars_read_total
the total number of characters read
Definition: json.hpp:92
ValueType
Definition: value.h:9
#define JSON_HEDLEY_UNLIKELY(expr)
Definition: json.hpp:1124
constexpr const number_float_t * get_impl_ptr(const number_float_t *) const noexcept
get a pointer to the value (floating-point number)
Definition: json.hpp:17049
static void construct(BasicJsonType &j, typename BasicJsonType::string_t &&s)
Definition: json.hpp:3496
physics associatedGroupsWithLeft p1
static type_error create(int id_, const std::string &what_arg)
Definition: json.hpp:2078
#define NLOHMANN_BASIC_JSON_TPL_DECLARATION
Definition: json.hpp:1814
static std::uint8_t decode(std::uint8_t &state, std::uint32_t &codep, const std::uint8_t byte) noexcept
check whether a string is UTF-8 encoded
Definition: json.hpp:14527
BEGIN_PROLOG don t mess with this pandoraTrackGausCryoW true
bool parse_bson_element_internal(const int element_type, const std::size_t element_type_parse_position)
Read a BSON document element of the given element_type.
Definition: json.hpp:5360
std::string exception_message(const token_type expected, const std::string &context)
Definition: json.hpp:9109
std::string get_token_string() const
Definition: json.hpp:8488
AllocatorType< basic_json > allocator_type
the allocator type
Definition: json.hpp:14812
json_ref(const value_type &value)
Definition: json.hpp:11110
input_adapter(const ContiguousContainer &c)
input adapter for contiguous container
Definition: json.hpp:4292
void write_bson_element(const string_t &name, const BasicJsonType &j)
Serializes the JSON value j to BSON and associates it with the key name.
Definition: json.hpp:12234
constexpr bool operator<=(Interval< Q, Cat > const a, Quantity< Args...> const b) noexcept
Definition: intervals.h:446
json_reverse_iterator & operator++()
pre-increment (++it)
Definition: json.hpp:10005
bool get_msgpack_array(const std::size_t len)
Definition: json.hpp:6456
void int_to_string(string_type &target, std::size_t value)
Definition: json.hpp:3293
output_string_adapter(StringType &s) noexcept
Definition: json.hpp:11262
static parse_error create(int id_, const position_t &pos, const std::string &what_arg)
create a parse error exception
Definition: json.hpp:1947
static auto from_json(BasicJsonType &&j, ValueType &val) noexcept(noexcept(::nlohmann::from_json(std::forward< BasicJsonType >(j), val))) -> decltype(::nlohmann::from_json(std::forward< BasicJsonType >(j), val), void())
convert a JSON value to any value type
Definition: json.hpp:3810
primitive_iterator_t & operator-=(difference_type n) noexcept
Definition: json.hpp:9267
auto get_ptr() noexcept-> decltype(std::declval< basic_json_t & >().get_impl_ptr(std::declval< PointerType >()))
get a pointer value (implicit)
Definition: json.hpp:17320
static void to_cbor(const basic_json &j, detail::output_adapter< uint8_t > o)
Definition: json.hpp:21125
static constexpr CharType get_msgpack_float_prefix(double)
Definition: json.hpp:12327
bool sax_parse(const input_format_t format, json_sax_t *sax_, const bool strict=true)
Definition: json.hpp:5210
json_value m_value
the value of the current element
Definition: json.hpp:21020
JSON_HEDLEY_RETURNS_NON_NULL char * to_chars(char *first, const char *last, FloatType value)
generates a decimal representation of the floating-point number value in [first, last).
Definition: json.hpp:13709
std::string sub(const std::string &a, const std::string &b)
Definition: TruthText.cxx:100
typename BasicJsonType::number_float_t number_float_t
Definition: json.hpp:5179
constexpr auto type_name()
Definition: common.h:12
typename BasicJsonType::string_t string_t
type for strings
Definition: json.hpp:4342
json_pointer top() const
Definition: json.hpp:10418
friend iter_impl operator+(difference_type i, const iter_impl &it)
addition of distance and iterator
Definition: json.hpp:9842
static JSON_HEDLEY_WARN_UNUSED_RESULT basic_json from_msgpack(detail::input_adapter &&i, const bool strict=true, const bool allow_exceptions=true)
create a JSON value from an input in MessagePack format
Definition: json.hpp:21626
discarded by the the parser callback function
void pop_back()
remove last reference token
Definition: json.hpp:10320
const_reverse_iterator rend() const noexcept
returns a const reverse iterator to one before the first
Definition: json.hpp:18860
#define NLOHMANN_JSON_VERSION_MAJOR
Definition: json.hpp:33
iteration_proxy_value & operator++()
increment operator (needed for range-based for)
Definition: json.hpp:3329
string_t value(const typename object_t::key_type &key, const char *default_value) const
overload for a default value of type const char*
Definition: json.hpp:18025
bool empty() const noexcept
checks whether the container is empty.
Definition: json.hpp:19123
#define a1
typename T::mapped_type mapped_type_t
Definition: json.hpp:2486
void set_begin() noexcept
set the iterator to the first value
Definition: json.hpp:9478
bool number_float(number_float_t, const string_t &)
Definition: json.hpp:4968
bool contains(KeyT &&key) const
check the existence of an element in a JSON object
Definition: json.hpp:18604
static diyfp mul(const diyfp &x, const diyfp &y) noexcept
returns x * y
Definition: json.hpp:12724
constexpr const number_integer_t * get_impl_ptr(const number_integer_t *) const noexcept
get a pointer to the value (integer number)
Definition: json.hpp:17025
JSON_HEDLEY_RETURNS_NON_NULL const char * what() const noexceptoverride
returns the explanatory string
Definition: json.hpp:1869